

Coastal impact modelling with the diva++ library

Session 3 - 31/08/23

Daniel Lincke

Fall/Winter 2023/2024

Recap and remarks

Daniel Lincke

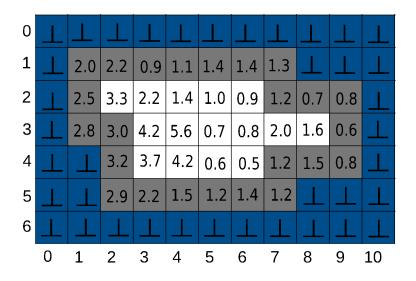
- A hypsometric profile of a CM is a stylized model of the coastal plain that allows for simple computations of exposure, flood damages and adaptation.
- Basically a mapping from elevation into cumulated data.

Definition Given a cm

$$cm: G \to \mathbb{B} imes \mathbb{R}^{\perp} imes (\mathbb{R}^{\perp})^n$$

a (discrete) hypsometric profile (with connectivity threshold theta) of cm is a function

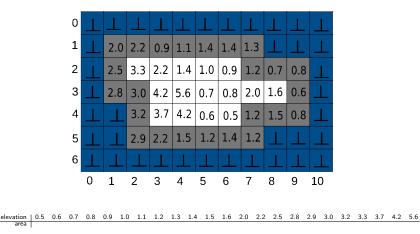
$$\begin{array}{rcl} dhsp_{cm,\theta} & : & \mathbb{R} \to \mathbb{R}^n_+ \\ dhsp_{cm,\theta}(e) & = & \displaystyle\sum_{\substack{(x,y) \\ hc_{cm}(x,y) \leq \theta \\ cm(x,y) = (b,z,\vec{d}) \\ x < e}} \vec{d} \end{array}$$


Daniel Lincke

Definition, less formal:

- the (discrete) hypsometric profile of a coastal model is a function that maps elevations the cumulated dataset values (of the datasets included in the coastal model)
- It maps an elevation e to the sum if all dataset values of all grid cells that have an elevation no higher than e and that have hydrologically connectivity to the ocean not higher threshold than θ.

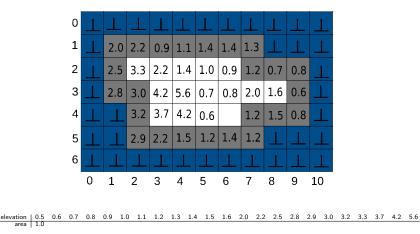
Remark:


ln applications the coastal model is often filtered by hydrologically connectivity in a preprocessing step so that the θ does not have to be taken into account in the computation of a hypsometric profile.

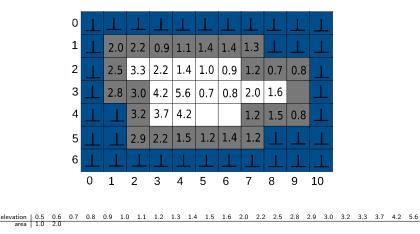
Daniel Lincke

Fall/Winter 2023/2024

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (implying a edge length of 1.0). ($\theta > 5.6$)

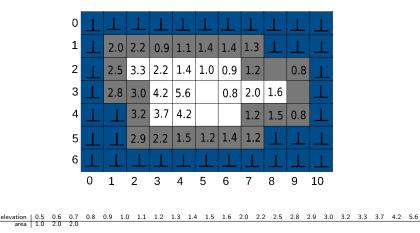


Daniel Lincke

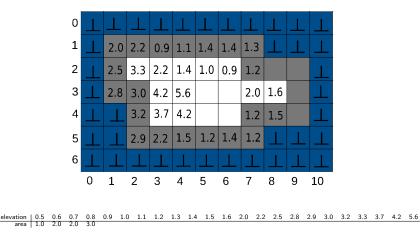

Coastal impact modelling with the diva++ library

area

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

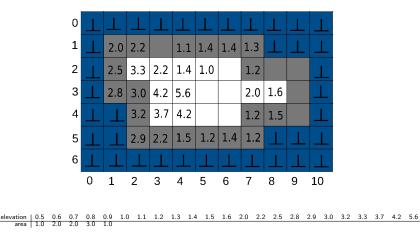


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

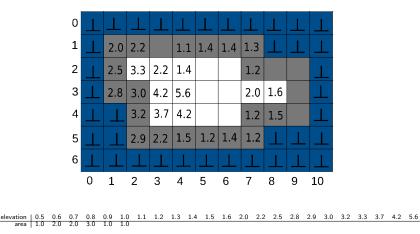


Daniel Lincke

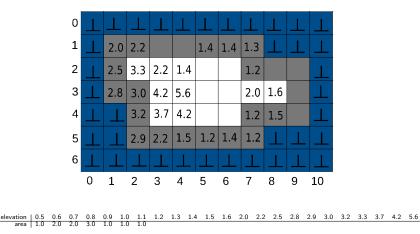
Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)



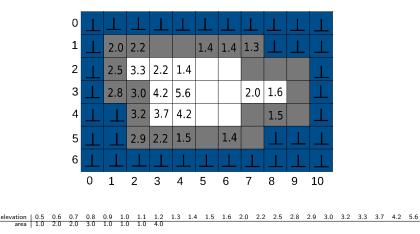
Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

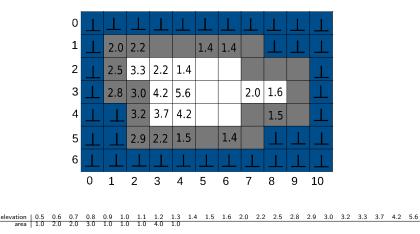


Daniel Lincke


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

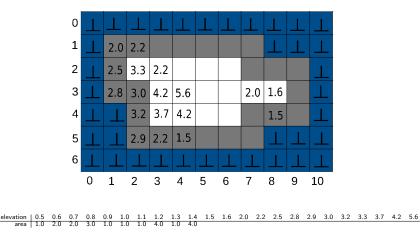
Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

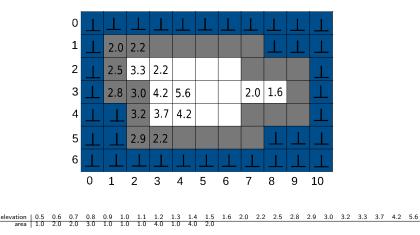

Daniel Lincke

Fall/Winter 2023/2024

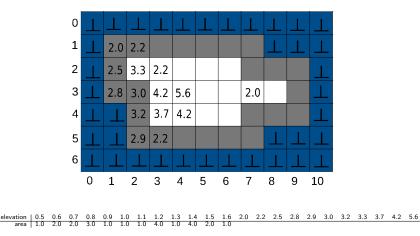
Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)



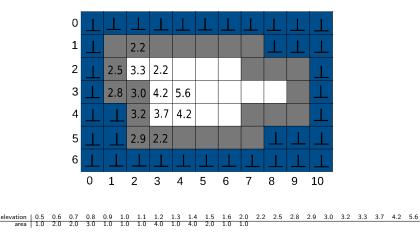
Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)


Daniel Lincke

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

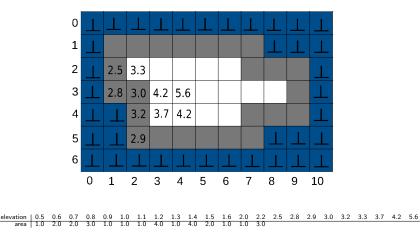

Daniel Lincke

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)


Daniel Lincke

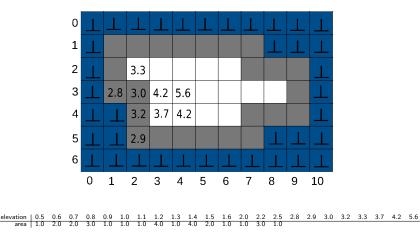
Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

Daniel Lincke


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

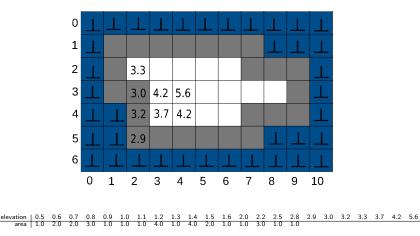
Daniel Lincke

Fall/Winter 2023/2024

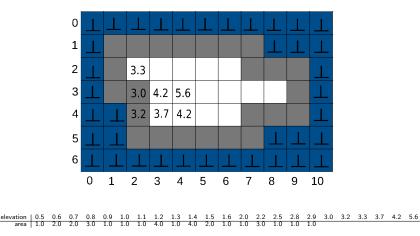

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

Daniel Lincke

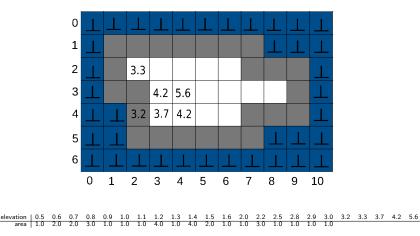
Fall/Winter 2023/2024


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

Daniel Lincke

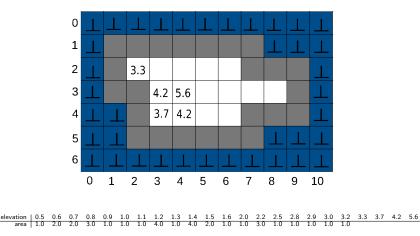

Fall/Winter 2023/2024

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)



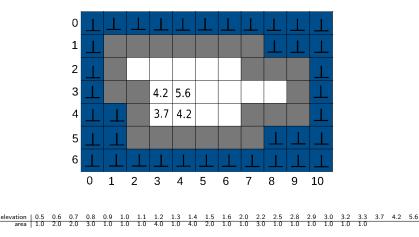
Daniel Lincke

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

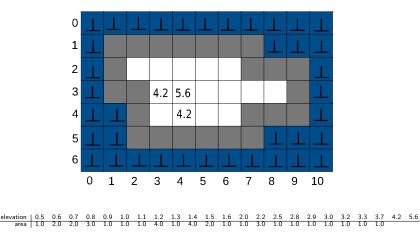
Daniel Lincke

Fall/Winter 2023/2024


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

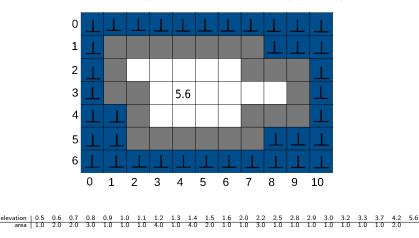
Daniel Lincke

Fall/Winter 2023/2024


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

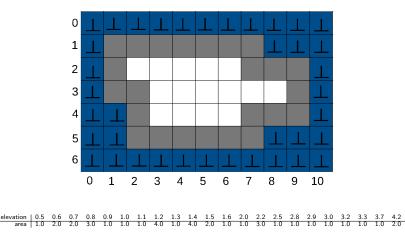
Daniel Lincke

Fall/Winter 2023/2024


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

Daniel Lincke

Fall/Winter 2023/2024


Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

Daniel Lincke

Fall/Winter 2023/2024

Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0). ($\theta \ge 5.6$)

Daniel Lincke

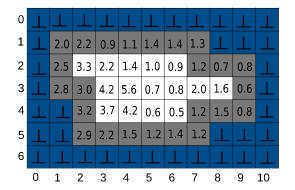
Fall/Winter 2023/2024

5.6

10

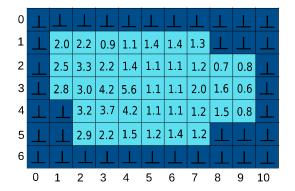
Assuming that the CM is extended with an dataset that maps grid cells to area, where each grid cell is mapped to 1.0 (imlpying a edge length of 1.0) the following mapping is obtained:

elevation																							
area	1.0	2.0	2.0	3.0	1.0	1.0	1.0	4.0	1.0	4.0	2.0	1.0	1.0	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0

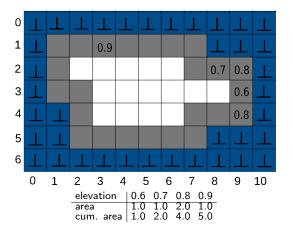

or cumulative:

elevation	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	2.0	2.2	2.5	2.8	2.9	3.0	3.2	3.3	3.7	4.2	5.6
area	1.0	3.0	5.0	8.0	9.0	10.0	11.0	12.0	13.0	17.0	19.0	20.0	21.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	33.0	34.0

The (discrete) hypsometric profile is the mapping defined by this table. It shows the cumulative area below given elevation values.


Hypsometric profiles - Another example

If a connectivity threshold is given the mapping is modified accordingly. For instance, the mapping with connectivity threshold 1.0 is defined by:


Hypsometric profiles - Another example

If a connectivity threshold is given the mapping is modified accordingly. For instance, the mapping with connectivity threshold 1.0 is defined by:

Hypsometric profiles - Another example

If a connectivity threshold is given the mapping is modified accordingly. For instance, the mapping with connectivity threshold 1.0 is defined by:

- One might want to know what the values in between given points are. For instance, what the cumulative area below elevation 1.42 is.
- In order to compute intermediate values interpolation is used.
- A hypsometric profile defined like this is (not neccessarily strictly) increasing, that is $e_1 \leq e_2 \rightarrow dhsp_{cm,\theta}(e_1) \leq dhsp_{cm,\theta}(e_2)$.
- Any interpolation used should maintain this property.
- Linear interpolation is widely used.

Definition Given a CM

$$cm: G \to \mathbb{B} \times \mathbb{R}^{\perp} \times (\mathbb{R}^{\perp})^n$$

a (partial linear) hypsometric profile (with connectivity threshold *theta*) of *cm* is a function

$$\begin{split} hsp_{cm,\theta} &: \quad \mathbb{R} \to \mathbb{R}^n_+ \\ hsp_{cm,\theta}(e) &= \begin{cases} dhsp_{cm,\theta}(m) & \text{if } e > m \\ dhsp_{cm,\theta}(e) & \text{if } \exists (x,y) : elevation(x,y) = e \text{ and } hc_{cm}(x,y) \leq \theta \\ \frac{dhsp_{cm}(e_2) - dhsp_{cm}(e_1)}{e_2 - e_1} * (e - e_1) + dhsp_{cm}(e_1) & \text{otherwise} \end{cases} \\ \\ where m &= \max\{z : \exists (x, y) : hc_{cm}(x, y) = z\} \\ e_2 &= \min\{z : z > e \text{ and } \exists (x, y) : elevation(x, y) = z \text{ and } hc_{cm}(x, y) \leq \theta \} \\ e_1 &= \max\{z : z < e \text{ and } \exists (x, y) : elevation(x, y) = z \text{ and } hc_{cm}(x, y) \leq \theta \} \end{cases}$$

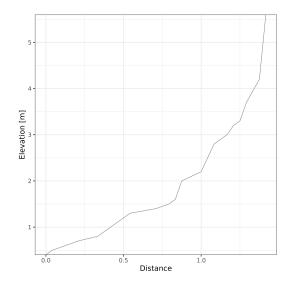
Daniel Lincke

Hypsometric profiles - continuous

- The function is continuous in the interval [min, ∞) where min = min{e and ∃(x, y) : elevation(x, y) = e and hc_{cm}(x, y) ≤ θ}.
- In implemented models that build upon hypsometric profiles there migth be an additional value added that maps all exposure data sets to zero.
- For instance, the example maps the grid cells to elvation values rounded to one digit with minimum elevation value 0.5. An additional value might be added with elevation 0.4 that
- maps all other datasets associated with this DEM to zero.
- By this addition the (partial linear) hypsometric profile becomes a continous function on (−∞,∞).

Linea	r int	erp	ola	tio	ı is	use	d to) CO	mpu	ite t	he a	area	in l	oetw	/een	giv 2.8		ooint 3.0		3.3	3.7	4.2	5.6
area																							
area 30 Iuiu Vuiu	1.0	3.0	5.0	8.0	9.0	10.0	11.0	12.0	13.0	17.0	Elevation [m]	20.0	21.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	33.0	34.0
10	i	/	2	EI	evatio	on [m]	4		5		2-	0		10		a [area	20 a unit]		3	0			

Daniel Lincke


Hypsometric profiles as stylized coastal plains

- The hypsometric profile can be interpreted as stylized model of a coastal plain.
- The length of associated coast can be determined. In the example used above: 24 gride cells define the coastline, edge length 1.0, so the center-to-center length is also 1.0, so the length of coast is 24.0. (There might be more sophisticated methodes to determine coast length)
- The physical distance from the coast of an elevation point can be determind by dividing the cumulative area by the coast length.
- The horizontal distance from the coast of an elevation point can be determind by geometry.

elevation	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	2.0	2.2	2.5	2.8	2.9	3.0	3.2	3.3	3.7	4.2	5.6
distance	$\frac{1}{24}$	$\frac{3}{24}$	$\frac{5}{24}$	$\frac{8}{24}$	$\frac{9}{24}$	$\frac{10}{24}$	$\frac{11}{24}$	$\frac{12}{24}$	$\frac{13}{24}$	$\frac{17}{24}$	<u>19</u> 24	<u>20</u> 24	$\frac{21}{24}$	<u>24</u> 24	<u>25</u> 24	<u>26</u> 24	$\frac{27}{24}$	28 24	<u>29</u> 24	<u>30</u> 24	<u>31</u> 24	<u>33</u> 24	<u>34</u> 24

The coastal plain can be though of being constructed from rectangular stripes with the apropriate width

Hypsometric profiles as stylized coastal plains

Hypsometric profiles: DIVA

locationid	area01 0	area02 0	area03 0	area04 0	area05 0	area06 0	area07 0	area08 0	area09 0	area10 0	area11 0	area12 0
CZ ABW 00000	2.05	1.39	1.85	3.47	3.76	5.08	4.56	5.81	4.37	4.07	4.4	3.92
CZ AGO 00000	0	0.01	0.04	4.05	7.22	10.23	5.71	4.96	8.01	4.41	2.98	3.48
CZ AGO 00001	8.2	12.4	71.06	70.95	43.49	22.99	15.89	11.55	9.64	8.62	6.59	6.69
CZ AGO 00002	0.25	0.29	0.5	0.94	1.86	1.75	1.79	2.5	90.18	17	16.76	13.48
CZ_AGO_00003	2.22	5.78	15.05	87.35	48.32	76.39	46.23			16.33	27.58	20.16
CZ AGO 00004	0.08	0.65	2.05	46.44	23.53	13.06	6.2	3.89	2.52	3.83	2.45	1.8
CZ AGO 00005	17.44	4.19	7.25	8.28	6.75	7.18	5.96	5.41	4.08	4.28	3.46	3.05
CZ AGO 00006	0.71	0.49	1.46	4.52	6.58	5.95	6.07	5.22	4.95	4.48	4.42	4.62
CZ AGO 00007	4.13	0.82	3.74	17.61	32.34	21.78	29.49	16.81	18.02	21.45	16.32	20.75
CZ AGO 00008	90.92	10.71	17.94	50.61	31.46	27.78	23.77	17.92	13.94		10.51	11.23
CZ AGO 00009	0.57	0.29	0.46	1.16	5.49	4.08	4.89	4.6	5.26	15.3	19.02	16.15
CZ AGO 00010	0.08	0.4	29.45	16.38	13.74	6.77	9.34	3.52	19.15	9.46	12.76	11.14
CZ AGO 00011	0.3	7.85	6.8	10.19	68.97	66.7	33.6	14.76	7.09	5.36	3.89	3.65
CZ AGO 00012	0.21	0.19	0.22	1.3	0.38	1.05	9.95	73.98	90.49	56.46	22.43	11.95
CZ AGO 00013	7.92	1.23	1.8	3.29	4.21	4.48	4.5	3.42	3.43	3.6	3.28	2.56
CZ AGO 00014	0	0.03	0.06	2.85	2.01	1.95		1.02	0.84	0.79	0.92	
CZ_AGO_00015	0.89	1.13	8.08	25.84	15.64				11.24	9.88	12.02	
CZ AGO 00016	4.62	1.81	2.94	4.16	5.41	7.42	7.94	8.15	8.96	8	7.68	7.68
CZ AGO 00017	1.21	1.9	8.46	15.67	31.87	22.1	19.86	14.55	9.68	8.54	7.47	7.44
CZ AGO 00018	0	0	0	0	0	0	(0) (0	0	0
CZ AGO 00019	0	0	0	0	0	0	(0	0 0	0	0	0
CZ AGO 00020	0.25		13.91	14.74	9.76	7.8			6.02	3.75	2.94	2.46
CZ_AGO_00021	1.15	0.52	1.51	6.37	83.73	80.14	97.1	50.61	53.64	39.35	68.37	66.65

Daniel Lincke

Hypsometric profiles: DIVA

locationid	00001 0	pop02 0	0 60000	0 40000	0 200005	0 30000	pop07 0	pop08_0	pcp09_0	pop10_0	pop11 0	pop12 0
CZ ABW 00000	7323.171	332,588	440,478		1047.696			1918.844	1441.808	1388.306		
CZ AGO 00000	0	0	0	16.987	31.425						15.288	
CZ AGO 00001	8651.306	648.041			3400.729							
CZ AGO 00002	78,139	1,699	1.699	3.397	6,795	5.945	4.241	8,493	273,485	42,467	52,655	47.563
CZ AGO 00003	82144.093	4646.701	17943.859	15769.568	11659.644	12005.322			6585.728			4658.592
CZ AGO 00004	0	2.548	4.247	69.645	44.165	19.535	6.795	3.397	2.548	2.548	2.548	1.699
CZ AGO 00005	0	0	0	0	0	0	0) (0			0
CZ AGO 00006	0	0	0	0	0	0	(0	0	0	((0
CZ AGO 00007	80.687	2.548	11.891	66.248	128.249	81.536	117.206	63.7	69.645	85.785	64.549	84.084
CZ AGO 00008	0	0	0	0	0	0	(0	0			0
CZ AGO 00009	21,233	0.849	0.849	5,945	29,727	21.233	26.329	22,083	19,535	56,905	72.193	57,755
CZ AGO 00010	1048.077	127.4			968.24			3.397				
CZ AGO 00011	5.945					277.732						
CZ AGO 00012	17,835	0	0.849	4.247	0.849	2.548	39.055	253.101	284.527	184.305	77.285	43.316
CZ AGO 00013	30,576			4.247		5.945						3.397
CZ AGO 00014	0	2.548				7.644	5.096					
CZ AGO 00015	85.632	1,699	23.781	91.728	49.261	45.864	48.412	34.823	38.22	33.973	42,467	35.521
CZ AGO 00016	1550,882	22,932	133,345	437,407	787.332	1660.446	1705.33	1662.145	1622.220	1516.059	1368.270	1014,953
CZ AGO 00017	4088.689	13.589	62.001	585.19	596,232	792.428	629.356	1328.353	1166.134	1042.132	1372.522	1073.557
CZ AGO 00018	0	0	0	0	0	0	(0	0			0
CZ_AGO_00019	0	0	0	0	0	0	() (0			0
CZ AGO 00020	27536.226	1531.347	2995.598	2734.003	2398.516	3692.9	2301.693	2597.20	3345.523	2801.1	3450.84	
CZ AGO 00021	1413.29	36.521			1871.081	2395.119			1754.722	1953.466	1317.316	1526.251
CZ AGO 00022	686.261	58,604	236,964	701.549	610.67	437,407	267.54	213.183	186.004	161.373	151.181	128.249

Daniel Lincke

The end

Thanks.

Daniel Lincke