Exercise sheet n°1 : Basic concepts

1.1 Theoretical part

Exercice 1 :

Let $G^{3\times 3}$ be a finite grid.

(a) How many different 4-connected paths from grid cell (0,0) to grid cell (2,2) exist?

Solution	: 12:		

(b) How many different 8-connected paths from grid cell (0,0) to grid cell (2,2) exist?

Solution: Already almost impossible to count by hand: 235.

(c) Can you answer the two questions above for a 4×4 grid and a 5×5 grid?

Solution: There exists no closed formula for this. The sequences are nevertheless known (paths on $n \times n$ grid for n = 1, ..., 5): 4-connected: https://oeis.org/A007764 - 1, 2, 12, 184, 8512 8-connected: https://oeis.org/A140518 - 1, 5, 235, 96371, 447544629 Take-home-message: "check all possible paths" is no promising strategy for anything.

(d) Let $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9, \bot\}$. How many different datasets can be definend that map G to M?

Solution: For the each grid cell there are 10 possibile values. As there are 9 grid cells the result is 10^9

Exercice 2 :

In the lecture we saw two inequalities for the cardinality of neighbourhoods: $\forall G, i, j : 0 \leq |M_G^4(i, j)| \leq 4$ and $\forall G, i, j : 0 \leq |M_G^8(i, j)| \leq 8$. Answer (and argue) for each integer $k = 0, \ldots, 4$ resp. $k = 0, \ldots, 8$:

(a) Is there a triple G, i, j such that $|M_G^4(i, j)| = k$ resp. $|M_G^8(i, j)| = k$?

Exercice 3 :

In the lecture we saw how neighbourhoods can be seen as relations. As an example lets consider M_G^8 and define a relation \mathcal{R} as $((i_1, j_1), (i_2, j_2)) \in \mathcal{R} \iff (i_1, j_1) \in M_G^8(i_2, j_2)$. Answer and argue:

(a) Is \mathcal{R} reflexive (that is $\forall i : (i, i) \in \mathcal{R}$)?

Solution: No, by definition.

(b) Is \mathcal{R} irreflexive (that is $\forall i : (i, i) \notin \mathcal{R}$)?

Solution: Yes, by definition.

(c) Is \mathcal{R} symmetrical (that is $\forall i, j : (i, j) \in \mathcal{R} \to (j, i) \in \mathcal{R}$)?

Solution: Yes. $(i_1, j_1) \in M_G^8(i_2, j_2)$ means by definition that one of eight cases occurs. Case one: $i_1 = i_2 - 1$ and $j_1 = j_2$ Then: $i_2 = i_1 + 1$ and $j_2 = j_1$. And thus: $(i_2, j_2) \in M_G^8(i_1, j_1)$. The other cases can be threated similar (has not to be done in detail).

(d) Is \mathcal{R} transitive (that is $\forall i, j, k : (i, j) \in \mathcal{R}$ and $(j, k) \in \mathcal{R} \to (i, k) \in \mathcal{R}$)?

Solution: No, by example:

B is in the 8-neighbourhood of A and C is in the 8-neighbourhood of B but C is NOT in the 8-neighbourhood of A.

Exercice 4 :

Connectivity can also be seen as a relation. Lets consider 8-connectivity on a dataset *data* and define S as $((i_1, j_1), (i_2, j_2)) \in S \iff (i_1, j_1)$ is 8-connected to (i_2, j_2)

(a) Show that \mathcal{S} is an equivalence relation (that is \mathcal{S} is reflexive, symmetrical, transitive).

Solution: Reflexivity: [(i, j)] is an (8-connected) path from (i, j) to (i, j). Symmetry: $((i_1, j_1), (i_2, j_2)) \in \mathcal{S}$ means there is an 8-connected path $[(i_1, j_1), gc2, \ldots, (i_2, j_2)]$ from (i_1, j_1) to (i_2, j_2) . Then the reverse path $[(i_2, j_2), \ldots, gc2, (i_1, j_1)]$ is an 8-connected path from (i_2, j_2) to (i_1, j_1) and thus $((i_2, j_2), (i_1, j_1)) \in \mathcal{S}$. Transitivity: $((i_1, j_1), (i_2, j_2)) \in \mathcal{S}$ and $((i_2, j_2), (i_3, j_3)) \in \mathcal{S}$ means there are 8-connected paths $[(i_1, j_1), gc2, \ldots, (i_2, j_2)]$ from (i_1, j_1) to (i_2, j_2) and $[(i_2, j_2), gd2, \ldots, (i_3, j_3)]$ from (i_2, j_2) to (i_3, j_3) . Then the concatenated path $[(i_1, j_1), gc2, \ldots, (i_2, j_2), gd2, \ldots, (i_3, j_3)]$ is an 8-connected path from (i_1, j_1) to (i_3, j_3) and thus $((i_1, j_1), (i_3, j_3)) \in \mathcal{S}$.

(b) Lets assume the underlying dataset is a DEM - what do the equivalence classes represent?

Solution: Two gridcells are in relation (and thus in the same equivalence class) if they are 8-connected. Thus equivalence classes represent islands.

Exercice 5 :

Let $G^{21\times 21}$ be a finite grid and *data* the dataset on this grid that is shown in the figure below. Let further \leq_7 be a predicate with $\leq_7 (x) = (x \leq 7)$ and \leq_8 defined similarly. Answer the following questions and prove your answer (graphical proves are accepted):

0	T				L J	. 1	. 1		L .	L	L .	L .	LÌ	L	L	L	L	L	L	LL	L
1	T	0	2	1	0	5	7	8	8	3	6	2	6	8	4	5	2	5	1	6 ⊥	L
2	T	6	6	5	2	8	7	7	4	3	4	9	2	6	4	1	4	3	7	4 ⊥	L
3	T	7	2	2	8	1	4	5	4	2	1	3	1	5	5	7	8	7	0	6 ⊥	L
4	T	2	3	9	0	5	8	5	4	7	9	0	2	4	7	9	1	0	2	6 ⊥	L
5	T	9	8	9	8	3	1	9	4	2	6	4	7	4	7	3	4	8	6	3 ⊥	L
6	L	6	5	3	8	1	3	7	3	7	3	3	4	2	2	9	0	2	6	2 1	L
- 7	T	3	4	2	9	8	0	9	3	8	6	9	7	2	2	4	5	6	1	4 ⊥	L
8	T	2	7	8	9	4	5	1	0	3	0	2	7	9	8	3	1	4	1	4 1	L
9	T	8	8	2	9	5	4	4	0	8	9	3	2	8	3	3	5	2	2	6 ⊥	L
10	T	7	4	4	8	4	0	1	8	9	5	6	6	8	9	8	0	8	5	9 1	L
11	T	3	1	0	9	8	9	8	9	8	9	9	1	9	0	9	0	9	9	7 1	L
12	T	9	5	9	4	1	7	9	1	4	8	9	1	2	9	8	4	1	2	5 J	L
13	T	6	4	2	4	7	9	2	6	4	5	8	2	5	4	9	5	0	3	4 」	L
14	T	1	6	7	7	3	4	8	4	3	1	8	9	9	9	8	8	9	9	1 8	L
15	T	9	8	0	4	5	0	3	7	0	5	0	3	8	5	3	1	0	0	9 1	L
16	T	0	4	1	9	9	8	5	4	6	7	4	1	2	6	5	3	3	0	4 1	L
17	T	5	2	8	7	0	1	9	5	6	5	2	7	6	2	7	4	8	0	7 1	L
18	T	5	0	9	0	2	5	5	0	6	3	7	5	6	3	5	6	0	1	L 0	L
19	T	2	8	7	0	9	8	9	9	7	0	0	6	4	2	8	1	9	6	71	L
20	T	1 1			LJ	. 1	. 1		L .	L	L.	L.	L	L	L	L	L	L	L	1 1	L
	() 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

(a) Is there a \leq_7 -constrained 4-connected path from grid cell (1, 1) to grid cell (19, 19)?

(b) Is there a \leq_7 -constrained 8-connected path from grid cell (1, 1) to grid cell (19, 19)?

- (c) Is there a \leq_8 -constrained 4-connected path from grid cell (1, 1) to grid cell (19, 19)?
- (d) Is there a \leq_8 -constrained 8-connected path from grid cell (1, 1) to grid cell (19, 19)?
- (e) Is there a \leq_7 -constrained 4-connected path from grid cell (19, 1) to grid cell (1, 19)?
- (f) Is there a \leq_7 -constrained 8-connected path from grid cell (19, 1) to grid cell (1, 19)?
- (g) Is there a \leq_8 -constrained 4-connected path from grid cell (19,1) to grid cell (1,19)?
- (h) Is there a \leq_8 -constrained 8-connected path from grid cell (19, 1) to grid cell (1, 19)?
- (i) Can you derive a general rule when two gridcells are \leq_{θ} -constrained connected?

Solution: Note that each 4-connected path is also an 8-connected path by definition. All \leq_{7} -constrained paths: no. All \leq_{8} -constrained paths: yes. Graphical proof:

The red gridcells define a barrier with elevation 8 or above. No \leq_7 -constrained paths can cross this barrier. The \leq_8 -constrained paths are shown in green and can cross the barrier (at gridcells with data values 8 - these are not colored green here to emphasize the barrier). This can be used to characterize when two gridcells are \leq_{θ} -constrained connected: if and only if there is no barrier with data values only greater than θ between them. This could be formalised.

1.2 Practical part

Exercice 1 :

The library code is available on https://gitlab.com/globalclimateforum/diva_library. The Julia language can be downloaded from https://julialang.org/. Code can be edited with usual editors, for instance Visual Studio https://visualstudio.microsoft.com/de/ or build-in editors like vim or emacs. (a) Check if you can see/checkout the repository. Checkout should work as follows:
 git clone -branch exercises https://gitlab.com/globalclimateforum/diva_library.git
 At the location called a sub directory diva_library will be created with furter subdirectories exercises and therein exercise01. There are a few files in this directory:

• exercies1_Intro.jl A short demo on the representation of undefined values. Can be run with julia exercies1_Intro.jl (called in the directory where the file is located).

```
    exercies1_functions_implemented.jl Pre-implemented functions that can be used
solving the exercise. Provided are especially two neghbourhood functions nh4 and nh8:
include("exercies1_functions_implemented.jl")
nh8 (generic function with 2 methods)
```

```
julia> A = [1 2 2 3 4; 1 2 3 3 4; 5 6 7 7 8; 9 9 8 8 8; 0 0 0 0 0]
  5×5 Matrix{Int64}:
      2
         2
   1
            3
               4
      2
  1
         3
            3
               4
   5
      6
        7
            7
               8
   9
      9
        8
            8
               8
      0
   0
        0
            0
               0
  julia> nh4(A,3,4)
  4-element Vector{Tuple{Int64, Int64}}:
   (2, 4)
   (4, 4)
   (3, 3)
   (3, 5)
  julia> nh8(A,(3,4))
 8-element Vector{Tuple{Int64, Int64}}:
   (2, 4)
   (4, 4)
   (3, 3)
   (3, 5)
   (2, 3)
   (2, 5)
   (4, 3)
   (4, 5)
• exercies1_functions_to_implement.jl This file contains the functions (more accu-
```

```
rate: the definition of the functions) you want to implement. In particular:
# Test if path, given as an array of pairs,
# is a valid path from startcell to endcell ind dataset
function valid_4connected_path(dataset :: Array{Float64},
```

```
path :: Array{Tuple{Int64,Int64}},
```

```
startcell :: Tuple{Int64,Int64},
endcell :: Tuple{Int64,Int64}) :: Bool
end
function valid_8connected_path(dataset :: Array{Float64},
path :: Array{Tuple{Int64,Int64}},
startcell :: Tuple{Int64,Int64},
endcell :: Tuple{Int64,Int64}) :: Bool
end
# Compute the coastline of a given land/elevation dataset
function coastline(dataset :: Array{Float64}) :: Array{Bool}
end
```

• exercies1_run.jl The actual exercise file, implements soem test that will test if you implemented the required functions successfully. Can be executed the command julia exercies1_Intro.jl wich will produce an output like:

Test Summary:	Error	Total	Time					
Exercise 01	8	8	2.0s					
path1 is a valid 8-connected path from (2,2) to (6,3) but not a valid 4-connected path from (2,2) to (6,3) in data	2	2	1.3s					
path2 is neither a valid 8-connected path from (2,2) to (3,9) but nor a valid 4-connected path from (2,2) to (3,9) in data	2	2	0.2s					
path3 is neither a valid 8-connected path from (2,1) to (2,8) but nor a valid 4-connected path from (2,1) to (2,8) in data	2	2	0.2s					
data_cl should be the coastline of data	1	1	0.1s					
data_cl should be the coastline of random data	1	1	0.2s					
ERROR: LoadError: Some tests did not pass: 0 passed, 0 failed, 8 errored, 0 broken.								

Your goal is that it produces the following output:

Test Summary:		Pass	Total	Time
check Exercise (D1	8	8	0.3s

(b) Implement the functions valid_4connected_path and valid_8connected_path such that they test if a given path is a valid path between two gridcells in a dataset. Use the definition provided in the lecture.

```
Solution:
```

```
function valid_4connected_path(dataset :: Array{Float64},
  path :: Array{Tuple{Int64,Int64}},
  startcell :: Tuple{Int64,Int64},
  endcell :: Tuple{Int64,Int64}) :: Bool
  if (path[1] != startcell) return false end
  if (path[size(path,1)] != endcell) return false end
```

```
if dataset[path[1][1],path[1][2]]==-Inf return false end
  for i in 2:size(path,1)
    if dataset[path[i][1],path[i][2]]==-Inf return false end
    if !(path[i] in nh4(dataset,path[i-1])) return false end
  end
  return true
end
function valid_8connected_path(dataset :: Array{Float64},
 path :: Array{Tuple{Int64,Int64}},
  startcell :: Tuple{Int64,Int64},
  endcell :: Tuple{Int64,Int64}) :: Bool
  if (path[1] != startcell) return false end
  if (path[size(path,1)] != endcell) return false end
  if dataset[path[1][1],path[1][2]]==-Inf return false end
  for i in 2:size(path,1)
    if dataset[path[i][1],path[i][2]]==-Inf return false end
    if !(path[i] in nh8(dataset,path[i-1])) return false end
  end
  return true
end
```

(c) Implement the function coastline that computes the coastline of a given dataset (interpreted as DEM with land/ocean).

Solution: