
The Computational Platform for DT Models:
Version 0.11 Technical Documentation

Steffen Fürst (Global Climate Forum)

July 27, 2020

1 Overview
This text is supplementary material for the Computational Platform for DT models. The plat-
form implements an extended and generalized graph dynamical system. The extensions are added
to ease the development of ABM simulations by combining (social) networks with spatial informa-
tion. This document describes the current implementation of the platform. Additional information
about the basic idea behind the platform, an example implementation of a model in form of a tu-
torial, and the source code of the platform itself can be found at https://globalclimateforum.
org/GCF-Platform-for-DT-Models. To use the platform for writing own models, the basic idea text
combined with the tutorial should be sufficient. Previous, theoretical work on the concept can be
found at https://globalclimateforum.org/2018/09/26/.

The current version of the platform is only a prototype to demonstrate the concepts, including the
parallelisation of the simulation. It is written in R without any consideration of the CPU performance.
Other versions in other languages will follow, with the core probably written in C++. This versions
will then also clean up the inconsistent naming between the description of the platform and the
platform code itself.

2 Important Concepts
This section contains a short wrap-up of important concepts of the platform. But it is advisable to read
the basic idea text available at https://globalclimateforum.org/GCF-Platform-for-DT-Models
before this document.

2.1 Nodes & Edges
Nodes may be of different types, e.g. representing persons, households, firms, etc. and have a state
that belongs to a type-specific state space.

Edges between the nodes are directed, if a transition of node a depends on the state of node b, an
edge from b to a is needed. Edges may also have different types (e.g. a network for goods exchange
may differ from a network for information exchange) and may have a state (e.g., when representing
an exchange of goods, an edge’s state may report the quantity).

2.2 Node Layers
The nodes of the graph are organized in three different layers. The main interactions between agents
are described in the Interagent Layer, which in the current implementation is also called "explicit
graph layer". The "explicit" here refers to the point that the edges in the graph must be generated
explicitly by the model code, while in the other two layers edges are also generated implicitly by the
platform itself. Nodes of this layer are also called computational agents.

The second layer is the Spatial Layer, which provides a discrete grid. Each element of the grid
is also a node in the graph, can have a state, too, and each computational agent can be assigned to

1

https://globalclimateforum.org/GCF-Platform-for-DT-Models
https://globalclimateforum.org/GCF-Platform-for-DT-Models
https://globalclimateforum.org/2018/09/26/
https://globalclimateforum.org/GCF-Platform-for-DT-Models

an element of the grid. In particular, elements of the grid may also aggregate information from all
agents in the explicit graph "located" there.

The third layer contains nodes that has an edges from and/or to every other node of the graph and
is therefore called Global Layer. This may be the case, e.g., for model parameters that all (or large
sets of) computational agents get as input, for gathering information from them to generate model
output for visualisation, and for aggregating information within the model that is passed back to the
computational agents.

Global
Layer

Interagent
(Explicit)
Layer

Spatial
Layer

In Agg Out

A1
A2 A3

A4

B1
B2 B3

B4

C1

C2

C3

C4 C5
C6

C7

Fig. 1: All nodes of the graph, but only the
explicitly given edges are shown

Global
Layer

Interagent
(Explicit)
Layer

Spatial
Layer

In Agg Out

A1
A3

A4

B1
B2 B3

B4

C1

C2

C3

C4 C5
C6

C7
A2

Fig. 2.: Explicit and implicit edges for an
example computational agent

2.3 Parallel Execution
A key feature of this platform is that it allows simulations to be run on machines with vastly different
computing power, up to high performance computers. Which means that the overall state of the
simulation can be splitted into smaller chunks and distributed over different processing elements
(PEs). Many design decisions of the platform where taken with this requirement in mind, e.g. that
agents a can only access the state of agent b, when an edge from b to a exists.

In the current version the distribution is a virtual one. The implementation uses a single CPU
core but for illustrating the principle, the state of the nodes from the interagent layer is distributed
over several lists, where each list is representing a PE. The nodes of the global and spatial layer are
available on all PEs, in the real parallel implementation this will require additional synchronization,
which was omitted in this implementation.

Also the explicit edges and the implizit edges between nodes of the spatial and the interagent layer
are virtually distributed. An edge and it’s state is available on PE i in the case, that one of the both
connected nodes are distributed to PE i, whereby the nodes of the spatial layer are all assigned to PE
1 in the current implementation.

3 Model State Data Structure & Initialization
3.1 Concept
The agents on the platform can be of different types δa ∈ ∆A, where ∆A is the set of all agent types.
For each agent type δa we have a different set of state variables xδa,1, . . . , xδa,n, where each xδa,i is
element of a (potentially) different set of possible states Xδa,i. So the state space for an agent of type
δa is Θδa = Xδa,1 × . . .×Xδa,n.

The agents can be set into relation via a directed multi-graph, whereby the agents are represented
by vertices. The edges in this graph can also be associated with states. We construct the state space
for the edges in the same way as for the vertices/agents.

The overall state space of the system at time t is then Θt =
∏
δa∈∆A

Θnδa,t
δa

×
∏
δe∈∆E

Θnδe,t
δe

where
∆E is the set of all edge types, nδa,t is the number of agents of type δa and nδe,t is the number of
edges of type δe in the system.

To initialze the simulation, we must define all the different types and construct the initial model
state. The types of the set ∆A are therefore assigned to one of the three layers.

2

3.2 Code
So the initialize function of the platform has the parameters agentTypes, globalTypes, rasterTypes
and edgeTypes, where agentTypes are the types of the nodes of the Interagent Layer, globalTypes
the types of the nodes of the Global Layer and rasterTypes the types of the nodes of the Spatial
Layer. The initial state for the Interagent Layer can be constructed by the stateInitFunc, for the
Global Layer by the globalInitFunc and for the Spatial Layer by the rasterInitFunc. Please
be aware, that the initial state can contain an empty set for some of the types, e.g. when entities of
a type only appear later in the simulation.

The initSimulation function creates a new R environment, which contains the complete state
of the simulation and some functions to access the three different layers. It also incl. the tables that
allocate the nodes and edges of the Interagent Layer to the different (virtual) PEs.

initSimulation <- function(agentTypes,
edgeTypes,
modelParams,
stateInitFunc,
globalTypes,
globalInitFunc = NULL,
rasterTypes = NULL,
rasterInitFunc = NULL) {

sim <- new.env()
sim$agentTypes <- agentTypes
sim$edgeTypes <- edgeTypes
sim$globalTypes <- globalTypes
sim$rasterTypes <- rasterTypes
sim$numPEs <- modelParams$numPEs

modelStateFull <- stateInitFunc(modelParams)
sim$distributed is a list of two vectors. The vectors are representing
the different PEs, so the length of those vectors is equal to sim$numPEs.
The first vector contains the model state of the Interagent Layer distributed
to the different PEs, the second contains for each vector element
(representing a PE) a table that contains for all edges where a node of
this PE is involved the information on which PE the node of the opposite
side is "living".
sim$distributed <- .mapAgentsToPEs(modelStateFull, agentTypes, sim$numPEs)
sim$getExplicitLayer <- function() { sim$distributed[[1]] }
sim$getPEs <- function() { sim$distributed[[2]] }

if (! is.null(globalInitFunc)) {
sim$global <- globalInitFunc(modelParams)

}
we always create automatically the type MODELPARAMS in the Global Layer
sim$global$MODELPARAMS <- modelParams

if (! is.null(rasterTypes)) {
sim$raster <- rasterInitFunc(modelParams)
for (r in rasterTypes) {

.createRasterLayer modifies the sim environment as a side effect
by adding for each rasterType a table with nodes for this raster and
a table with a PE list
sim <- .createRasterLayer(sim, r, sim$raster[[r]], 1)

}
}

sim$getGlobalLayer <- function() { sim$global }
sim$getRasterLayer <- function() { sim$raster }

reduce is a helper function to calculate global values based on the state
of the nodes in the *Interagent Layer*.
sim$reduce <- function(type, agentFunc, aggregationFunc) {

3

sim$getExplicitLayer() %>% map(type) %>% map(agentFunc) %>% unlist %>%
aggregationFunc↪→

}

sim
}

As we can see, the initSimulation function calls two helper functions .mapAgentsToPEs and
.createRasterLayer which are implemented as follows:
The helper function ~.mapAgentsToPEs~ takes a
non-distributed model state and creates a distributed version.
See also the comment in initSimulation.
.mapAgentsToPEs <- function(modelState, agentTypes, numPEs) {

edgeTypes <- modelState %>% names %>% discard(. %in% agentTypes)

Store which agent was moved to which PE
PElist <- tibble(ID = character(),

PE = integer())

Prepare the distributed data structures (the indices are the different PEs)
modelStateDistributed <- vector("list", numPEs)
PElists <- vector("list", numPEs)
for (i in 1:numPEs) {

PElists[[i]] <- tibble(ID = character(),
PE = integer())

}

Distribute the agents
for (a in agentTypes) {

We group the agents by their rowid (modulo numPEs), so that each PE gets
the↪→

same number (plus/minus one) of agents
modelState[[a]] %<>% rowid_to_column("PE") %>%

mutate(PE = ((PE - 1) %% numPEs) + 1)
PElist %<>% bind_rows(modelState[[a]]) %>% select(ID, PE)
perPE <- modelState[[a]] %>% split(.$PE)

for (i in 1:numPEs) {
modelStateDistributed[[i]][[a]] <- perPE[[i]]
PElists[[i]] %<>% bind_rows(modelStateDistributed[[i]][[a]]) %>%

select(ID, PE)
}

}

Distribute the edges
for (e in edgeTypes) {

if (nrow(modelState[[e]]) > 0) {
for (i in 1:numPEs) {

Find for each PE the edges where an agent of this PE is involved ..
fID <- modelState[[e]] %>% filter(fromID %in% PElists[[i]]$ID)
tID <- modelState[[e]] %>% filter(toID %in% PElists[[i]]$ID)
... and add those edges to the distributed state
modelStateDistributed[[i]][[e]] <- bind_rows(fID, tID) %>% unique
Also add the PEs of the agents on the other edge pos to the PElists
PElists[[i]] %<>% bind_rows(fID %>% transmute(ID = toID) %>%

left_join(PElist, by = "ID")) %>% unique↪→

PElists[[i]] %<>% bind_rows(tID %>% transmute(ID = fromID) %>%
left_join(PElist, by = "ID")) %>% unique↪→

}
}

}

list(modelStateDistributed, PElists)

4

}

create a unique name for the single raster nodes
.createRasterID <- function(raster, x, y) {

paste0(raster,"x", x,"y", y)
}

create for a raster a tibble that contains the distribution
of the nodes to PEs. In the current implementation, we distribute
all nodes to PE 1, as we don't have a real parallel implemention anyway
.createRasterLayer <- function(sim, rname, rdata, distance) {

create a unique name for the table of PEs for the nodes of a raster
PEsName <- paste0(rname, "PEs")

Iterate over all elements of the raster and add the
PE information to the sim environment
for (y in seq(dim(rdata)[1])) {

for (x in seq(dim(rdata)[2])) {
id = .createRasterID(rname, x, y)
sim[[PEsName]] %<>% bind_rows(tibble(ID = id, PE = 1))

}
}
sim

}

a platform helper function for the initialization, that takes a non-distributed
model state where the nodes does not have an ID, and add the node tables
a column "ID", which contains unique IDs for each node
withStringID <- function(modelState) {

modelState %>%
imap(~ rowid_to_column(.x, var = "ID") %>% mutate(ID = paste0(.y,ID)))

}

3.3 Example
To show the internal structure of the sim environment1, in the following we create such an environment
with a simple model state, that consists of three agents/nodes in the Interagent Layer and a single
2x2 raster as Spatial Layer. The Global Layer contains a node for the model parameter and defines
the type OUTPUT for the output of the simulation. As in the initial state we don’t have already any
output, we do not define any globalInitFunc, the OUTPUT node will be created later.

initStateFunc <- function(modelParams) {
list("AGENTS" = tibble(x = 1:3,

GRASSx = c(1,2,1),
GRASSy = c(3,2,3)),

"NETWORK" = tibble(fromID = c("AGENTS1", "AGENTS1"),
toID = c("AGENTS2", "AGENTS3")))

}

initRasterFunc <- function(modelParams) {
list("GRASS" = matrix(1:9, nrow = 3, ncol = 3))

}

sim <- initSimulation(agentTypes = "AGENTS",
edgeTypes = "NETWORK",
modelParams = tibble(numPEs = 3, rasterGrowth = 2),
stateInitFunc = compose(withStringID, initStateFunc),
globalTypes = "OUTPUT",

1What we show here are platform internal details that should never be used directly by the model implementation
(and will likly be private in the later revisions).

5

rasterTypes = "GRASS",
rasterInitFunc = initRasterFunc)

3.3.1 Interagent Layer

Lets take a look at the most complex structure that represents the Interagent Layer. As mentioned
in a comment inside the initSimulation, sim$distributed contains one vector (sim$distributed[[1]])
for the model state of the Interagent Layer.

sim$distributed[[1]] ## or sim$getExplicitLayer()

[[1]]
[[1]]$AGENTS
A tibble: 1 x 5

PE ID x GRASSx GRASSy
<dbl> <chr> <int> <dbl> <dbl>

1 1 AGENTS1 1 1 3

[[1]]$NETWORK
A tibble: 2 x 3

ID fromID toID
<chr> <chr> <chr>

1 NETWORK1 AGENTS1 AGENTS2
2 NETWORK2 AGENTS1 AGENTS3

[[2]]
[[2]]$AGENTS
A tibble: 1 x 5

PE ID x GRASSx GRASSy
<dbl> <chr> <int> <dbl> <dbl>

1 2 AGENTS2 2 2 2

[[2]]$NETWORK
A tibble: 1 x 3

ID fromID toID
<chr> <chr> <chr>

1 NETWORK1 AGENTS1 AGENTS2

[[3]]
[[3]]$AGENTS
A tibble: 1 x 5

PE ID x GRASSx GRASSy
<dbl> <chr> <int> <dbl> <dbl>

1 3 AGENTS3 3 1 3

[[3]]$NETWORK
A tibble: 1 x 3

ID fromID toID
<chr> <chr> <chr>

1 NETWORK2 AGENTS1 AGENTS3

6

We can see, that the state of the layer is distributed to three different PEs, e.g. index [[2]] shows
the state that is available at PE 2, in this case the state of AGENT2 and the edge from AGENT1 to
AGENT2. We can also check for which nodes the PEs are known on this PE 2:

sim$distributed[[2]][[2]] ## or sim$getPEs()[[2]]

ID PE
1 AGENTS2 2
2 AGENTS1 1

As there is no node between AGENT2 (which is the only one assigned to PE 2) and AGENT3, PE 2
does not know anything about AGENT3. This has also the implication, that in the transition functions,
which are described later, AGENT2 can not create an edge to AGENT3.

3.3.2 Spatial Layer

The Spatial Layer is not virtually distributed to different PEs, as we currently also plan to implement
it later in a way that all PEs knows the complete state of the Spatial Layer, assuming that the data
size of this layer is considerably smaller then the of the Interagent Layer.2 So when we take a look
at the Spatial Layer we see only our small 2x2 matrix that we created in the initRasterFunc:

sim$raster ## or sim$getRasterLayer()

$GRASS
[,1] [,2] [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

But the .createRasterLayer function also added anadditional tables per raster to the sim envi-
ronment, which is automatically named. This table contains the information, which PE calculates an
update for those nodes.

sim$GRASSPEs

ID PE
1 GRASSx1y1 1
2 GRASSx2y1 1
3 GRASSx3y1 1
4 GRASSx1y2 1
5 GRASSx2y2 1
6 GRASSx3y2 1
7 GRASSx1y3 1
8 GRASSx2y3 1
9 GRASSx3y3 1

In the current implementation this isn’t used and all PEs are set to 1. In later revisions, different
distribution schemas will be available. The corresponding nodes incl. there state are only constructed
temporarly on demand.

2But in a later revisions of the platform, it should be possible to select between a distributed and non-distributed
version, so that the modeller can check which fits/perform better to her model implementation. One advantage of the
architecture of this platform is, that those decisions are transparent to the model code itself.

7

3.3.3 Global Layer

The Global Layer is simple and just contains a node (or an empty set) for each globalType. Like
for the rasters, this value is available on all virtual PEs. Helper functions like sim$reduce will be
available to guarantee the synchronization of the state between the different PEs. As we havn’t create
our OUTPUT node yet, the Global Layer consists only of the model parameters, which where added
automatically by the initSimulation function.

sim$global

$MODELPARAMS
A tibble: 1 x 2

numPEs rasterGrowth
<dbl> <dbl>

1 3 2

4 State Transition
For each layer of the graph the platform provides a function that can be called to calculate a new
state for all the nodes of the corresponding layer.

4.1 Interagent Layer
4.1.1 Concept

Let Ψ be the set of all agents of the Interagent Layer. Each agent has a transition function (or a
set of transition functions) that construct a set of agents and edges, so we have:

tψ : Θt → Θψ,t (1)
where Θψ,t =

∏
δa∈∆A

Θnφ,δa,t
δa

×
∏

δe∈∆E

Θnφ,δe,t
δe

where nφ,δ,t is the number of agents/edges that the agent φ has constructed in her transition
function. We can then combine individual transition functions to a comprehensive transition function
by concatenating the constructed elements.

t = (tψ1 , . . . , tψnt) : Θt → Θt+1 (2)

So, in contrast to the usual object-oriented ABM frameworks, the state of objects is not modified
by the transition function, but completely recreated by the transition function.

4.1.2 Parallel Execution

The already mentioned the system described above should be distributed among different processing
elements (PE) in such a way that each PE only receives a subset of the overall system state. Therefore,
a transition function is always connected to a set of networks formed by the edges of a type δe ∈ δE .
This can be also a raster from the Spatial Layer, in this case implicit edges will be added from the
node corresponding to the position of the agent and also the Moore neighborhood.

For a single agent ψ only the state of agents ψ̂i is available for which an edge (ψ̂i, ψ) exists in one
of the associated networks of the transition function. So each PE does only know some part of the
overall model state, namely:

• The state of the agents on this PE.

8

• The edges of the graph, where an agent is on tail or head position.

• The nodes of the Global Layer and the Spatial Layer.

• While a transition function is called: The state of agents on the tail position of the network
associated with the transition function

To apply a transistion function, the following steps are taken:

• First we must ensure that for all explicit edges of the networks associated with the transition
function, the state of agents on the tail position is known on the PE of the agents on the head
position.

• We also check which agents of an edge of PE x are on another PE y, and send those edges to
this PE.

• In the case that one of the associated networks is a raster, create temporarly nodes for the
position of the agent and for the Moore neighborhood.

• Then the transition function is applied

• We construct the new model state by gathering the returned lists of agents and edges.

4.1.3 Code

To modify the state of the agents and edges in the Interagent Layer we call the platform function
applyTransition. Thereby the parameter networks determines which networks and rasters are
associated with this transition function. The state of nodes and edges of the Interagent Layer
which have a type listed in invariantTypes are retained and cannot be changed by the agents in this
transition. And distance is the Moore Distance used for the temporary construction of raster nodes
as explained in section 4.2.

applyTransition <- function(sim,
transitionFunction,
networks = NULL,
invariantTypes = NULL,
distance = 1) {

ensure that the edges are known
sim$distributed <- .distributeNetworkState(sim)

in the case that the network is a raster, we must add the
PEs of the nodes of this raster to the known PEs table
for (n in networks) {

PEsName <- paste0(n, "PEs")
if (! is.null(sim[[PEsName]])) {

for (i in 1:sim$numPEs) {
sim$distributed[[2]][[i]] %<>% bind_rows(sim[[PEsName]])

}
}

}

modelStateDistributed <- sim$getExplicitLayer()
The .enhanceAgentStates function add that the state of agents
at the tail position of one network to the corresponding PE.
if (! is.null(networks)) {

enhancedModelStateD <- .enhanceAgentStates(sim, networks)
} else {

enhancedModelStateD <- sim$getExplicitLayer()
}

Now we simulate the parallel processing of the transition
function by iterating of the different distributed model state

9

for (i in 1:sim$numPEs) {
we first store the state of the agents or edges which
are invariant in this transition
invariantState <- invariantTypes %>%

map(~ modelStateDistributed[[i]][[.x]]) %>%
set_names(invariantTypes)

call all agents to apply their transitionFunction
modelStateDistributed[[i]] <- sim$agentTypes %>%

map(~ .transform(sim,
.x,
modelStateDistributed[[i]][[.x]],
enhancedModelStateD[[i]],
transitionFunction,
networks,
distance)) %>%

.consolidate(sim)

for the invariant state, add this to the state constructed
by the agents (in the case, that the agents also returned
entities of an invariantType, those will be overwritten)
for (n in invariantTypes)

modelStateDistributed[[i]][[n]] <- invariantState[[n]]
}
sim$distributed[[1]] <- modelStateDistributed

allow method chaining by returning the sim environment
sim

}

}

As mentioned above, we must first ensure that all explicit edges of the edge types given in the
parameter network, the state of agents on the tail position is known on the PE of the agents on the
head position. This is done in the function .distributeNetworkState:

~.distributeNetworkState~ takes the result of a transition
function, and sends the edges to the PEs of the agents on the head
or tail position.
.distributeNetworkState <- function(sim) {

modelStateDistributed <- sim$getExplicitLayer()
PElists <- sim$getPEs()
modelStateEnhanced <- modelStateDistributed
create new empty lists
newPElists <- PElists %>% map(~ .x[0,])

for (i in 1:sim$numPEs) {
for (e in sim$edgeTypes) {

We allow the creation of Networks while the simulation is running
if (! is.null(modelStateDistributed[[i]][[e]]) &&

nrow(modelStateDistributed[[i]][[e]]) > 0) {
Create two version of the edge tibble, ~matchFrom~ is extended with
the PEs of the tail, ~matchTo~ with the PEs of the head agents
matchFrom <- inner_join(modelStateDistributed[[i]][[e]],

PElists[[i]], by = c("fromID" = "ID"))
matchTo <- inner_join(modelStateDistributed[[i]][[e]],

PElists[[i]], by = c("toID" = "ID"))
sendNetworkTable is a tibble: fromID toID PE
sendNetworkTable <- bind_rows(matchFrom, matchTo)
sendPElist is a tibble: ID, PE, toPE
sendPElist <- bind_rows(sendNetworkTable %>% select(ID = fromID,

toPE = PE),
sendNetworkTable %>% select(ID = toID,

10

toPE = PE)) %>%
inner_join(PElists[[i]], by = "ID")

Use the send... tibbles to distribute the edges to the PEs
and also to send the (agentID, PE) information to those PEs
for (j in 1:sim$numPEs) {

if (i != j) {
modelStateEnhanced[[j]][[e]] %<>%

bind_rows(sendNetworkTable %>% filter(PE == j) %>% select(-PE)) %>%
unique

}
newPElists[[j]] %<>%

bind_rows(sendPElist %>% filter(toPE == j) %>% select(-toPE)) %>%
unique

}
}

}
}

list(modelStateEnhanced, newPElists)
}

As an agent should have the opportuniy to add an edge to a node of a raster, we then also add the
PEs of those nodes to the list of known PEs. This is done in the second block of the applyTransition
function.

The third block calls .enhanceAgentStates in the case, that the transition function was associated
with at least on network or raster. This fullfills the requirement, that the state of agents on the tail
position of an edge in the networks parameter list is available on the PE at the head position of this
edge.

The ~.enhanceAgentStates~ function ensures that the state of
agents at the tail position of the network associated with the next
transition function is available on the PEs of the agents at the
head position of the edges. This function is called before the
transition function itself, which then gets the returned extendend
model state.
.enhanceAgentStates <- function(sim, edgeTypes) {

modelStateDistributed <- sim$getExplicitLayer()
PElists <- sim$getPEs()
modelStateEnhanced <- modelStateDistributed
for (e in edgeTypes) {

for (i in 1:sim$numPEs) {
We allow the creation of Networks while the simulation is running
if (! is.null(modelStateDistributed[[i]][[e]]) &&

nrow(modelStateDistributed[[i]][[e]]) > 0) {
agentPEmap is a tibble(fromID, toID, PE of toID agent)
agentPEmap <- modelStateDistributed[[i]][[e]] %>%

select(fromID, toID) %>%
left_join(PElists[[i]], by = c("toID" = "ID")) %>%
unique

for (a in sim$agentTypes) {
iterate over the other PEs
for (j in (1:sim$numPEs %>% discard(. == i))) {

find the agents that must be send to other PEs ...
agentsIDtoSend <- agentPEmap %>% filter(PE == j) %>% select(fromID)
agentsToSend <- agentsIDtoSend %>%

inner_join(modelStateDistributed[[i]][[a]], by = c("fromID" = "ID"))
%>%↪→

unique %>%
rename(ID = fromID)

... and add them to the state of this other PE
modelStateEnhanced[[j]][[a]] %<>% bind_rows(agentsToSend)

11

}
}

}
}

}

modelStateEnhanced
}

The last block of the applyTransistion calls for every type of agentTypes the .transform
function:
~.transform~ takes one agent type and iterates over the agents of
this type, calling for each agent one of the transition
functions. Inside of ~.transform~ we use the ~limitState~ function
to ensure, that only the state of agents in the tail position of
the associated network is accessable.
.transform <- function(sim,

type,
agents,
modelState,
transitionFunc,
networks,
distance = 1) {

create the raster nodes that are embedded in the part of the model
state that is visible for the agent
createLocationNodes <- function(agent) {

rasterTables <- NULL
for (n in networks) {

if (n %in% sim$rasterTypes) {
in the case that the network is a raster, we must create
the explicit network first
rasterTables[[n]] <- NULL
r <- sim$raster[[n]]

x <- agent[[paste0(n,"x")]]
it's optional to assign agents to a raster, so only
continue, if this is really the case
if (! is.null(x)) {

y <- agent[[paste0(n,"y")]]
calculate the area of the Moore neighborhood (with borders)
fromx <- max(x - distance, 1)
tox <- min(x + distance, dim(r)[2])
fromy <- max(y - distance, 1)
toy <- min(y + distance, dim(r)[1])

iterate over this area and create nodes the nodes
for (x in seq(fromx, tox)) {

for (y in seq(fromy, toy)) {
id = .createRasterID(n, x, y)
rasterTables[[n]] %<>% bind_rows(tibble(ID = id,

x = x,
y = y,
value = r[[y, x]]))

}
}

}
}

}
rasterTables

}

ensure, that only the state of agents in the tail position of the
associated network is accessable.

12

limitState <- function(agent) {
agentTables <- NULL
if (! is.null(networks)) {

for (n in networks) {
a network name can be also a raster, but the raster nodes
are allready handled in createLocationNodes above
if (!(n %in% sim$rasterTypes)) {

incoming <- modelState[[n]] %>% filter(toID == agent$ID)

if (incoming %>% length > 0) # check that we have any edge
filter the agents, so that only agents which are
in the ~incoming~ tibble are part of the ~agentTables~
agentTables <- sim$agentTypes %>%

map(~ bind_rows(agentTables[[.x]],
modelState[[.x]] %>% filter(ID %in%

incoming$fromID))) %>%↪→

setNames(sim$agentTypes)
}

}
}

filter the network to edges where the agent is on tail or head position
availableEdgeTypes <- sim$edgeTypes %>% keep(~ .x %in% networks)
edgeTables <- availableEdgeTypes %>%

map(~ modelState[[.x]] %>%
(function(x) { if (is.null(x) nrow(x) == 0) NULL else

{ x %>% filter(agent$ID == fromID |
agent$ID == toID)}})) %>%

setNames(availableEdgeTypes)

create the overall available modelstate for the agent by concatenating
the filtered nodes and edges from the Interagent Layer, the created nodes
from the Spatial Layer and all nodes from the Global Layer
c(agentTables, edgeTables, createLocationNodes(agent), sim$global)

}

iterate over all agents and call their transition function with the part
of the model state, that is accessable by the agent
agents %>%

transpose %>%
map(~ transitionFunc(as_tibble(.), type, limitState(.x)))

}

As each agent return a seperate list of agents and edges, those must be combined into a single
table per type. This is done in the .consolidate function:
~.consolidate~ gets the collected output of ~.transform~ from all
agents in the system, so ~newModelState~ is a list (with the agent
types as keys) of lists (with the agents as keys) of tables (the
tables returned by a transition function), and reduces this to a
single table per type.
.consolidate <- function(newModelState, sim, oldModelState) {

flattenLists <- newModelState %>% flatten

c(sim$agentTypes, sim$edgeTypes) %>%
map(~ { flattenLists %>% map(.x) %>% bind_rows }) %>%
setNames(c(sim$agentTypes, sim$edgeTypes))

}

The parameter transitionFunction is the applyTransition function is itself a function that
has the form function(agent, type, modelState). This function is called for every agent in the
Interagent Layer. The function parameter agent contains the state of a single agent with the type
type. The parameter modelState contains the part of the overall model state that is accessable for
the agent.

13

4.1.4 Example

As an example for the applyTransition function, we create a transition function, that does nothing
but printing the accessable model state for the agent with the id AGENTS3.

showModelState <- function(agent, type, modelState) {
if (agent$ID == "AGENTS3") {

print(modelState)
}
list()

}

applyTransition(sim, showModelState, c("NETWORK", "GRASS"))

$AGENTS
A tibble: 1 x 5

PE ID x GRASSx GRASSy
<dbl> <chr> <int> <dbl> <dbl>

1 1 AGENTS1 1 1 3

$NETWORK
A tibble: 1 x 3

ID fromID toID
<chr> <chr> <chr>

1 NETWORK2 AGENTS1 AGENTS3

$GRASS
A tibble: 4 x 4

ID x y value
<chr> <int> <int> <int>

1 GRASSx1y2 1 2 2
2 GRASSx1y3 1 3 3
3 GRASSx2y2 2 2 5
4 GRASSx2y3 2 3 6

$MODELPARAMS
A tibble: 1 x 2

numPEs rasterGrowth
<dbl> <dbl>

1 3 2

We can see, that this agent can access the state of AGENT1 as there is a edge in NETWORK from this
agent to her. Also only the part of the raster in his neighborhood is accessable by AGENT3.

We can also see, that we don’t have any agents and edges left in the Interagent Layer after this
transition, as the transition function has only returned an empty list:

sim$getExplicitLayer()

[[1]]
[[1]]$AGENTS
A tibble: 0 x 0

[[1]]$NETWORK
A tibble: 0 x 0

14

[[2]]
[[2]]$AGENTS
A tibble: 0 x 0

[[2]]$NETWORK
A tibble: 0 x 0

[[3]]
[[3]]$AGENTS
A tibble: 0 x 0

[[3]]$NETWORK
A tibble: 0 x 0

4.2 Raster
4.2.1 Concept

The state transition of the Spatial Layer is much easier than that of the Interagent Layer. The
transition function is called for each node/position of a single raster, and as with the transition
function of the Interagent Layer, the model state known in the transition function is limited to
parts of the entire model state. This time we can associate the transition function with agent types
of the Interagent Layer and with edge types. For the agents of an associated agent type, we check
their positions on the raster, which must be part of the agent state. The state of agents with the
same position as the raster nodes are then available to the raster node. Edges are handled in the same
way as the Interagent Layer state transition, an edge is visible if the raster node is part of the edge.

The transition function must return a list that must have an entry VALUE containing the new
value for the grid position. Optionally, the list can also contain arbitrary edges of arbitrary edge
types. In the case that an edge is returned for an edge type δe, the complete network of that type
is created by the sum of all edges returned. But unlike the transition function in the Interagent
Layer, networks that are invariant for this transition function do not need to be reconstructed by the
transition function itself.

4.2.2 Code
applyRasterTransition <- function(sim, raster, transitionFunction,

agentTypes = NULL,
networks = NULL) {

el <- sim$getExplicitLayer()
generate the column names for the raster position in the
agent state
xName <- paste0(raster, "x")
yName <- paste0(raster, "y")

update the value of the node at the x,y position as a side effect and
return the edges constructed by the transition function
updatePos <- function(x, y) {

create a temporary node for this raster position
nodeName <- .createRasterID(raster, x, y)
node <- tibble(ID = nodeName, x = x, y = y, value = sim$raster[[raster]][[y,

x]])↪→

gather all the agent of the given agentTypes that are located
on this position
agentTables <- NULL

15

for (t in agentTypes) {
for (i in 1:sim$numPEs) {

agentTables[[t]] %<>%
bind_rows(el[[i]][[t]] %>% filter(get(xName) == !!x, get(yName) == !!y))

}
}

gather all edges of the given networks which have the raster node on
the head or tail position
edgeTables <- NULL
for (t in networks) {

for (i in 1:sim$numPEs) {
if (! is.null(el[[i]][[t]])) {

fromNode <- el[[i]][[t]] %>% filter(fromID == !!nodeName)
toNode <- el[[i]][[t]] %>% filter(toID == !!nodeName)
edgeTables[[t]] %<>% bind_rows(fromNode)
edgeTables[[t]] %<>% bind_rows(toNode)
in the case, that the raster node is on the head position, we
must also add the PE of the node on the tail position to the
list of known PEs
if (nrow(toNode) > 0)

sim$distributed[[2]][[1]] %<>%
bind_rows(toNode %>% transmute(ID = fromID, PE = i)) %>% unique

}
}

}

call the transition function with the gathers agents, edges and the
global layer
r <- transitionFunction(node, c(agentTables, edgeTables, sim$global))
update the value
sim$raster[[raster]][[y, x]] <- r[["VALUE"]]
and remove the value from the list, so that we return only the edges
r[["VALUE"]] <- NULL
r

}

the updatePos function can return edges, we gather them in the
combined list
combined <- list()
iterate over all positions
for (y in seq(dim(sim$raster[[raster]])[1])) {

for (x in seq(dim(sim$raster[[raster]])[2])) {
updatePos can return lists with edges of arbitrary networks
network <- updatePos(x, y)
check for which networks edges was in the returned list
networkTypes <- names(network)
and add those to the combined
combined <- networkTypes %>%

map(~ bind_rows(combined[[.x]], network[[.x]])) %>%
setNames(networkTypes)

}
}
clear all networks for which we got at least on edge returned
by the transition function
for (n in names(combined))

sim$distributed[[1]][[1]][[n]] <- NULL
and add the new networks instead
sim$distributed[[1]][[1]] %<>% append(combined)

allow method chaining by returning the sim environment
sim

}

16

4.2.3 Example

Again, we create a transition function that outputs the retrievable model state, this time for the raster
node GRASSx1y3. But since the method applyRasterTransition is not part of the tutorial mentioned
at the beginning, we will also show a possible useful transition function this time.

Let us assume that the AGENTS are sheep that want to eat grass. In the case that more than one
sheep is at the same place, they have to share the amount of grass that this node holds. If there is no
sheep on this node, the grass grows MODELPARAMS$grassGrowth units, otherwise the amount of grass
is set to 0 because it was eaten by the sheep(s).

Since the sheep state cannot be changed in the transition function itself, edges to the sheep are
generated. The edges have as state the amount of grass the sheep has eaten.

sim <- initSimulation(agentTypes = "AGENTS",
edgeTypes = "FEED",
modelParams = tibble(numPEs = 3, grassGrowth = 2),
stateInitFunc = compose(withStringID, initStateFunc),
globalTypes = "OUTPUT",
rasterTypes = "GRASS",
rasterInitFunc = initRasterFunc)

updateRaster <- function(rasterNode, modelState) {
if (rasterNode$ID == "GRASSx1y3") {

print(modelState)
}
list("VALUE" = if (nrow(modelState$AGENTS) > 0) 0

else rasterNode$value + modelState$MODELPARAMS$grassGrowth,
"FEED" = modelState$AGENTS %>%

transmute(fromID = rasterNode$ID,
toID = ID,
value = rasterNode$value / nrow(modelState$AGENTS)))

}

sim %>% applyRasterTransition("GRASS", updateRaster, "AGENTS")

$AGENTS
A tibble: 2 x 5

PE ID x GRASSx GRASSy
<dbl> <chr> <int> <dbl> <dbl>

1 1 AGENTS1 1 1 3
2 3 AGENTS3 3 1 3

$MODELPARAMS
A tibble: 1 x 2

numPEs grassGrowth
<dbl> <dbl>

1 3 2

As we can see, our example node GRASSx1y3 can only see the two AGENTS which have the model
state GRASSx == 1 and GRASSy == 3. And, as usual, additionally the Global Layer. Let’s have a
look at the raster:

sim$raster$GRASS

[,1] [,2] [,3]
[1,] 3 6 9
[2,] 4 0 10
[3,] 0 8 11

17

The amount of grass developed as expected. Finally, we also check the Interagent Layer. We
are mainly interested in the FEED edges, and since the nodes of the grass layer are all mapped to PE
1, it is sufficient to check the part of the Interagent Layer on PE 1:

sim$getExplicitLayer()[[1]]

$AGENTS
A tibble: 1 x 5

PE ID x GRASSx GRASSy
<dbl> <chr> <int> <dbl> <dbl>

1 1 AGENTS1 1 1 3

$NETWORK
A tibble: 2 x 3

ID fromID toID
<chr> <chr> <chr>

1 NETWORK1 AGENTS1 AGENTS2
2 NETWORK2 AGENTS1 AGENTS3

$FEED
A tibble: 3 x 3

fromID toID value
<chr> <chr> <dbl>

1 GRASSx2y2 AGENTS2 5
2 GRASSx1y3 AGENTS1 1.5
3 GRASSx1y3 AGENTS3 1.5

4.3 Global
4.3.1 Concept

The Global Layer contains nodes that should be available on all PEs. Also The transition function
for the nodes of the Global Layer should have access to all nodes.

For such operations it is therefore very obvious to use MPI functions like MPI_ALLREDUCE and
to provide wrappers for them. The current implementation of the platform has an example of such a
wrapper, namely the function reduce, which is added to the sim environment in an initSimulation
call:

reduce is a helper function to calculate global values based on the state
of the nodes in the *Interagent Layer*.
sim$reduce <- function(type, agentFunc, aggregationFunc) {

sim$getExplicitLayer() %>% map(type) %>% map(agentFunc) %>% unlist %>%
aggregationFunc↪→

}

4.3.2 Code

The transition function for a global node only receives the global node and the current state of the
simulation and must return the new state of the global node. For the platform itself, the state of
global nodes is transparent, so that the state can also be a table with a changing number of rows, e.g.
with one row for each time step.

The updateGlobal function exists mainly to hide the internal data structure of the sim environ-
ment:

18

updateGlobal <- function(sim, type, func) {
sim$global[[type]] <- func(sim$global[[type]], sim)

allow method chaining by returning the sim environment
sim

}

4.3.3 Example

As an example we create a transition function, that calculate the sum of all x values of all AGENTS
and add this sum as a new row to a tibble3:

observeSumX <- function(current, sim) {
current %<>% bind_rows(tibble(sumX = sim$reduce("AGENTS", "x", sum)))

}

updateGlobal(sim, "OUTPUT", observeSumX)

As we can see, the Global Layer has now also a new node OUTPUT, which contains the sum.

sim$getGlobalLayer()

$MODELPARAMS
A tibble: 1 x 2

numPEs grassGrowth
<dbl> <dbl>

1 3 2

$OUTPUT
A tibble: 1 x 1

sumX
<int>

1 6

We can call the transistion function repeatedly. Since the state of the agents did not changed
between thw two calls, we get additional rows with the same value:

updateGlobal(sim, "OUTPUT", observeSumX)
sim$getGlobalLayer()

$MODELPARAMS
A tibble: 1 x 2

numPEs grassGrowth
<dbl> <dbl>

1 3 2

$OUTPUT
A tibble: 2 x 1

sumX
<int>

1 6
2 6

3When we call updateGlobal for the first time, current equals NULL, and bind_rows creates a new tibble.

19

	Overview
	Important Concepts
	Nodes & Edges
	Node Layers
	Parallel Execution

	Model State Data Structure & Initialization
	Concept
	Code
	Example
	Interagent Layer
	Spatial Layer
	Global Layer

	State Transition
	Interagent Layer
	Concept
	Parallel Execution
	Code
	Example

	Raster
	Concept
	Code
	Example

	Global
	Concept
	Code
	Example

