
A Computational Platform for DT Models

Carlo Jaeger, Steffen Fürst, Manfred Laubichler, Sarah Wolf∗

June 28, 2020

In the coming years, the models used in DT (Decision Theater) events shall allow for and indeed foster
cumulative developments of knowledge. In the context of complex adaptive systems, sustainability, innova-
tion, and global futures, the models should represent a large variety of agents and the material as well as
ideational environments they interact in. Participants in a DT event shall interact with models where they
can assume the roles of decision makers, shaping the behaviour of ”focal agents” in the models and viewing
effects of the decisions that these focal agents can observe.

Cumulative development of knowledge in DT work calls for a computational platform that allows to
represent in a standardized way the different agents and entities involved in very different models. A key
requirement for such a platform is that it should allow simulations to be run on machines with vastly different
computing power. When used with high performance computers, the platform must allocate the available
computational resources to different model components depending on the computational cost each element
generates – a cost that typically varies in the course of a simulation run.

These requirements are fulfilled by the GCF computational platform for DT models.1 This text introduces
version 0 of the platform. A separate tutorial displays and explains the code relevant for professional users
and shows how to use it.

1 DT model features

Models of complex human-environment systems – including social, economic, ecological, technological com-
ponents and interactions – must be able to include combinations of the following features:

• agents can be of different types, e.g. governments, citizens, households, firms, animals, microorganisms,
etc., and the model representation of agents may draw on existing theories and modelling conventions.
Economic agents, e.g., may or may not be expected utility maximizers, or an agent may be a network
of agents at another scale, as considered in extended evolution. Agents may disappear and new agents
may emerge in the course of a simulation

• for use in DT events, some agents must offer the possibility to be taken over by the participants of
such events

• agents can exchange information, goods, etc. with each other in complex network structures that may
co-evolve with the agents

• agents are embedded in a common environment that can be spatially differentiated and may co-evolve
with the agents

• agents, but also networks and environments, may be extensively data-based, e.g. the set of agents
can be a synthetic population that matches statistical distributions of the real-world population for
relevant features

∗Comments are welcome to sarah.wolf@globalclimateforum.org.
1The GCF computational platform for DT models, version 0, has been developed by Steffen Fürst with support from Sarah

Wolf, Gesine Steudle, Manfred Laubichler and Carlo Jaeger. They all work with the Global Climate Forum, Sarah Wolf at the
Biocomputing Group, Institute of Mathematics at Freie Universität Berlin, Manfred Laubichler and Carlo Jaeger at the ASU
Global Futures Laboratory. Current work on the platform builds on research performed by GCF – with massive contribution
by Andreas Geiges, now at Climate Analytics – in an EU center of excellence for harnessing high performance computing to
study global challenges (see http://coegss.eu).

1



• input representing decisions of DT event participants can be incorporated in the model, and output
can be visualised in interactive response time

• the dynamics of the system are generally not deterministic

Later on, these model elements and components will be more closely specified, constructing, as it were, a
”DT modelling platform” on an abstract level. However, this is beyond the scope of the present text, that
focuses on the computational platform instead. The relation between the two may be understood in analogy
with the relation between a general purpose programming language and a domain specific language.

2 Computational platform features

To accommodate the mentioned features of DT models and allow for parallelization of simulations, the GCF
computational platform implements an extended and generalized parallel graph dynamical system.2

With such a structure, efficient load balancing in parallel runs can be achieved by graph partitioning. This
puts a particular focus on the network structures between agents and other entities in the modelled system,
which is not the case in well-established parallel ABM frameworks3;

In a simple graph dynamical system, the underlying graph is fixed, vertices have states in a common
state space, there is a transition function for each vertex that computes its next state from the current state
of the vertex itself and its nearest neighbours in the graph, and an update scheme provides the mechanism
by which these transitions are composed. This is generalised here as follows.

Nodes are called computational agents, they may be of different types, e.g. representing persons,
households, firms, etc. and have a state that belongs to a type-specific state space. Computational agents may
or may not represent agents in the modelled system; in particular, it may take more than one computational
agent to represent a modelled agent. Edges between the agents are directed, if a transition of agent a
depends on the state of agent b, an edge from b to a is needed. Edges may also have different types (sometimes
one speaks of a coloured graph; here, different colours represent different kinds of interactions, e.g. a network
for goods exchange may differ from a network for information exchange) and may have a state (e.g., when
representing an exchange of goods, an edge’s state may report the quantity).

The main graph for the interactions between agents is extended by two additional layers; one for spatial
locations, and one for specific computational entities that need edges from and/or to (almost) every com-
putational agent in the main interagent graph. The latter may be the case, e.g., for model parameters that
all (or large sets of) computational agents get as input, for gathering information from them to generate
model output for visualisation, and for aggregating information within the model that is passed back to
computational agents. As for the spatial dimension of models, the spatial layer provides a discrete grid
(in mathemical terms a matrix). Each element of the grid can have a state and transitions, too, and each
computational agent can, but need not, be assigned to an element of the grid. In particular, elements of the
grid may also play the role of aggregating information from all agents in the explicit graph ”located” there.

2While many platforms for the development of ABMs exist – see https://www.comses.net/resources/modeling-platforms/

for an overview – only a few of them allows to run a parallelized simulation on multiple nodes of a computer cluster. Moreover,
when they support spatially explicit models out of the box, load balancing is usually based on a rectangular decomposition of
the spatial domain, which is problematic e.g. for models with unequally distributed population density.

3https://evoplex.org/ is the only exception known to the authors; unfortunately the documentation for the model develop-
ment is not very extensive. https://www.informs-sim.org/wsc11papers/025.pdf presents InterSim, a general-purpose graph
dynamical system modeling framework, but the code is not publicly available and it is not clear whether it is still used.

2



Higly connected
comp. entities
e.g. I/O

Main
interagent
graph

Locations

In Agg Out

A1

A2
A3

A4

B1

B2 B3

B4

C1

C2

C3

C4 C5
C6

C7

Fig. 1: Main interagent graph with
additional layers

Higly connected
comp. entities
e.g. I/O

Graph
extension
to other
layers

Locations

In Agg Out

A1
A3

A4

B1

B2 B3

B4

C1

C2

C3

C4 C5
C6

C7

A2

Fig. 2.: Explicit and implicit edges for an
example computational agent

To model the system’s dynamic evolution, we consider discrete time steps. At each step t, there is a
set of computational agents; with each step, new ones may be added or some existing ones may be removed.
Similarly, the set of edges may evolve. For all agents and possibly for the edges present at the beginning of
a simulation, an initial state must be given.

In a transition, an agent’s new state at time t is then computed based only on information from the
previous step. Notice, however, that the state of an agent may include memory of previous steps. Information
from step t − 1 usually includes the previous state of the agent itself, and may include states of adjacent
agents in the explicit graph, possibly also the states of the respective edges themselves, as well as adjacent
entities implicitly linked to it by edges of the right direction. This can be interpreted to represent the
convention that the state of an agent cannot be changed by another agent; in fact, for clarity, the state
is recreated at each step, not merely modified. The underlying idea is that of a functional programming
approach: all elements of the model state needed for a transition function will be given as arguments; the
transition cannot be implicitly affected by any other mutable state or unintended side effects. While this
may take some getting used to, it decouples the simulation code, eases the reasoning about the transition
function and makes it easier to write unit tests for it.4

The fact that all transitions are defined on inputs from the previous step eases parallelization5. It also
excludes artefacts that might arise from the order in which agents carry out their transitions.6 Last but
not least, it can be viewed as a representation of plans and conflicts that might arise between them: if, e.g.,
two agents want to take the same resource, or move to the same place in the case where only one may be
in a place at each point in time, this means that methods to resolve the resulting conflicts are needed. The
computational platform requires to make this explicit by one or the other mechanism, rather than having to
assume ”first-come-first-serve” as is usual with random order of transitions of agents. The system transition
then recomposes the overall state from all recreated parts of the state, resolving potential conflicts as defined
by the modeller.

Parallelization means that model simulation runs are computed on several processing elements (PE). Each
of these executes the same program code, but for a different part of the data. When necessary, information
is exchanged between the different PEs, using a standard like the message passing interface, MPI. To assign
similar chunks of work to the different PEs, the graph is partitioned with the aim of balancing this load
between them. Efficient graph partitioning is a well-researched topic in the HPC context. The platform does
the parallelization mostly automatically, it is not necessary to keep parallelization in mind while writing
transition functions.

Version 0 of the GCF computational platform for DT models is implemented in R, as it is intended to
provide a grasp of how the platform functions and how it can be used. Future versions will focus on enhanced
computational performance.

4Deterministic “random” generators then allow to transform a stochastic transition function to a deterministic one while
testing the code.

5Otherwise, information sent from one process to another one might be outdated in the meantime
6This order is conventionally chosen to be random; in introductions to agent-based modelling, this convention is rarely

questioned. Other ordering conventions are feasible.

3


