The GCF Computational Platform for DT Models:
Version 0.11 Tutorial

Steffen Furst (Global Climate Forum)

July 27, 2020

This text constitutes a tutorial for working with the GCF Computational Platform for DT
Models, version 0, based on a simple example model. The basic ideas underlying the platform are
explained in the document "A Computational Platform for DT Models" (Jaeger et al., June 28,
2020). A more detailed technical documentation will be available by mid July, 2020. Hence, the
present document jumps right into the matter.

1 Prerequisites

This version of the GCF Platform is written in the R programming language', so a working R
installation is required to do the tutorial. Precompiled binary distributions for Windows and Mac,
as well as installation guidelines for Linux can be found under https://cran.r-project.org/.
The tutorial describes how the platform can be used with the RStudio IDE?. Please be aware that
RStudio does not come with R itself. The platform uses the tidyverse and magrittr libraries, but
will install them automatically if they are not found in your R library path.

We tested the code with the following versions:

o R: 3.6 and 4.0
e tidyverse: 1.3
e magrittr: 1.5

In case you cannot execute the tutorial model without errors, please check your versions and up-
date them accordingly. To update the packages, you can enter install.packages(c("tidyverse",
"magrittr")) into the R console. If this does not help, please send a message to steffen.fuerst@
globalclimateforum.org.

2 Model Example

To illustrate how one can work with the computational platform, in this tutorial we use a model
with multiple buyers and sellers, where the buyers randomly choose a seller from a fixed subset of
sellers at each step. This subset is different for each buyer.

2.1 Model Background

We have a simple but volatile market with n buyers, m sellers, and two goods called x and y. The
two goods are joint products, so that each seller sells both commodities. Their units are chosen so
that the production process yields the same quantity of each product. Buyers buy both commodities
from a single seller, but at each step each buyer randomly selects a seller from a fixed subset of all

11ts aim is not computational performance, but an illustration of the underlying ideas.
2https://rstudio.com/

https://cran.r-project.org/
steffen.fuerst@globalclimateforum.org
steffen.fuerst@globalclimateforum.org
https://rstudio.com/

sellers. We are only interested in relative prices, so we set the price for good x to 1, while the price
for good y is p.

At each step, each buyer has a fixed budget B for buying the commodities. The quantities are
chosen using a Cobb-Douglas utility function:

max u(z,y) = x> -y =2 (1)
T,y
s.t.: r+y-p<B

The solution of this optimization is:

x = B-a (2)
B-(1-a«)

p

y =

For illustrative reasons, we neglect production except for the assumption that x and y are joint
products, so that the seller tries to find a price where x = y. In the case of a single buyer, the
solution is p = ITTO‘ However, in our case, the sellers encounter different buyers with different
preferences a and a different budget B. So they start with a random price and adjust that price at
each time step:

dy
= — . _ 3
Dt d. Dt—1 (3)
where dy = Z Ty, dy = Z Yp
bebuyers bEbuyers

It is easy to see that in the single buyer case, this will lead to p = ITTO‘ after a single step.

2.2 Code

The code for this tutorial is available in the zip folder "DT_ gcf V0_Code" sent together with
this text (from July 1 on the code will also be available at https://globalclimateforum.org/
GCF-Platform-for-DT-Models.

You can look at the code by opening the tutorial.R file in RStudio (or any text editor). To
view results — or to test your R installation — you can simply click on Source.

@] tutorial.R \ =]

Source on Save | O - = Fun | *= Source =
1~ if ("rstudioapi” %in% loadedWamespaces() && rstudicapi::isfvailable()) {
2 setwd(dirname(rstudicapi: :getActiveDocumentContext()spath))

3=}
4 source("platform_ve.R")

After a while, you should see a plot in the Plots section of RStudio. This diagram shows the
overall difference in demand for good x and good y. Unlike the one buyer/one seller example, there
is always a surplus of one of the two goods, and there is no evidence of a convergence towards an
equilibrium.

3 Initialization

We define two types of agents, BUYER and SELLER and two types of networks.

agentTypes <- c("BUYER", "SELLER")
edgeTypes <- c("KNOWN_SELLERS", "BOUGHT_FROM")

https://globalclimateforum.org/GCF-Platform-for-DT-Models
https://globalclimateforum.org/GCF-Platform-for-DT-Models

The first network, KNOWN_SELLERS, is fixed and describes the sellers known to each buyer. Since
the direction of an edge determines the flow of information, and buyers needs the price information
to calculate their demand, it is a network from sellers to buyers.

The second network BOUGHT _FROM will be constructed in the transition function called calcDemand.
This network describes from which seller a buyer bought something, so its edges will go from the
buyers to the sellers. Beside calcDemand which will be the implementation of equation (2), we will
also implement a transition function with the name calcPrice, which implements equation (3).

We further define a list (a tibble in R, that is, the list elements may be of different types) of the
model parameters: modelParams; other than the user-defined parameters — in this case the numbers
of buyers and sellers and the number of sellers each buyer knows — it must contain the number of
(virtual) processing elements numPEs to which the simulation will be distributed?.

\modelParams <- tibble(numBuyer = 50, numSeller = 5, knownSellers = 2, numPEs = 5)

To start a simulation, we must call the platform function?
initSimulation <- function(agentTypes,
edgeTypes,
modelParams,
statelnitFunc,
globalTypes,
globalInitFunc,
rasterTypes = NULL,
rasterInitFunc = NULL)

The next three function parameters for initSimulation are explained in the following; the last
two, rasterTypes and rasterInitFunc are not relevant for this tutorial’s model as it does not have
a spatial dimension.

3.1 stateInitFunc

The stateInitFunc is a function that gets the modelParams as argument, and returns the inital
model state, in form of a list of tables, with one table for each agent type and edge type. We want
to initialize our buyers with values for o between 0 and 1, with values for B between 1 and 100
and the sellers initial prices p between 0.5 and 1.5. Also, we create the KNOWN_SELLERS network, by
randomly selecting for each BUYER a number of sellers, where the number is given by the parameter
modelParams$knownSellers.

So, our implementation of the stateInitFunc is the following:

initModel <- function(modelParams) {
initState <- function(modelParams) {
nb <- modelParams$numBuyer
ns <- modelParams$numSeller
list(
"BUYER" = tibble(
alpha = runif(nb),
B = runif(nb, max = 100) %>, ceiling,
x =0,
y =20
),
"SELLER" = tibble(p = runif(ns, min = 0.5, max = 1.5),
sum_y = 0)
)
}

initNetwork <- function(modelParams, modelState) {

3In this version the distribution is a virtual one, the implementation uses a single CPU core for illustrating the
principle. Also numPE must be smaller or equal then the smallest number of agents per type, so in our example numPE
must be smaller or equal to min(numBuyer, numSeller).

4Platform functions are written in rubine red in this document.

}

sampleSellers <- function() {
sample_n(modelState$SELLER, modelParams$knownSellers) 7%>% pull(ID)

1ist("KNOWN_SELLERS" =
modelState$BUYERSID 7>
map(~ tibble(fromID = sampleSellers(),
toID = .x)) W>%h
bind_rows)

}

agentState <- initState(modelParams) 7>} withStringID
c(agentState, initNetwork(modelParams, agentState))

In our initModel function, we construct the agents without any ID, but we need those IDs for

creating the edges. The withStringID function from the platform does this for us.

So we must first source the platform code,

| source("platform_v0.R")

and can then check the result of our initModel function:

| initModel (modelParams)

$BUYER
A tibble: 50 x 5
ID alpha B X y
<chr> <dbl> <dbl> <dbl> <dbl>
1 BUYER1 0.189 90 0 0
2 BUYER2 0.472 19 0 0
3 BUYER3 0.228 10 0 0
4 BUYER4 0.644 68 0 0
5 BUYER5 0.703 74 0 0
... with 45 more rows
$SELLER
A tibble: 5 x 3
ID p sum_y
<chr> <dbl> <dbl>
1 SELLER1 0.619 0
2 SELLER2 0.893 0
3 SELLER3 1.48 0
4 SELLER4 1.43 0
5 SELLER5 0.874 0

$KNOWN_SELLERS
A tibble: 100 x 2

...

g W N

fromID toID

<chr> <chr>
SELLER4 BUYER1
SELLER1 BUYER1
SELLER1 BUYER2
SELLER2 BUYER2
SELLER5 BUYERS3

with 95 more rows

As we can see, we build a list with three elements, two for our two agent types, and one for
the KNOWN_SELLER network. We ignored the BOUGHT_FROM network in the initialization, as it will
be constructed in the calcDemand transition functions, in which every buyer returns an edge to the
seller from whom he bought the goods.

3.2 globalTypes and globalInitFunc

The initSimulation function further requires a globalInitFunc and the globalTypes list. Here
"global" refers to the entities on the top layer in Figures 1 and 2 of the document "A Computational
Platform for DT Models" (Jaeger et al., June 28, 2020), sent out along with this tutorial. For the
example model, we want to know the trajectories of price and excess demand, so time series for the
variables we want to observe have to be written in a simulation. Thus, in the globalInitFunc we
create an empty tibble with the corresponding three columns, and name this tibble OBSERVER:

initObserver <- function(modelParams) {
1list ("OBSERVER" =
tibble(
p = numeric(),
sum_x = numeric(),
sum_y = numeric()

))

The modelParams argument from the initSimulation call will also be available as part of the
global layer, in form of a tibble with the "type" MODELPARAMS. It is not necessary to take this
into account for the globalTypes parameter, we list here only the types that are created in the
globalInitFunc:

sim <- initSimulation(agentTypes = agentTypes,
edgeTypes = edgeTypes,
modelParams = modelParams,
stateInitFunc = initModel,
globalTypes = "OBSERVER",
globalInitFunc = initObserver)

4 Transition functions

The returned value from the initSimulation call is an R environment, which contains the complete
state of our simulation. To modify the state using a transition function we call the platform function
applyTransition(simulation, transitionFunction, networks, invariantTypes, distance),
whereby only simulation and transitionFunction are mandatory parameters. A transition func-
tion has the form function(agent, type, modelState). This function is called for every agent
in the explicit graph layer. The returned agents and edges are gathered by the platform and then
concatenated to yield together with the invariant agents and edges the new state of the explicit
graph layer. The function parameter agent contains the state of a single agent with the type type.
The parameter modelState contains the part of the overall model state that is visible for the agent.
In the current implementation all entitites of the Global Layer of Figures 1 and 2 in the document
"A Computational Platform for DT Models" are visible. From the Interagent Layer, the states
of all agents which are on a tail position of one of the specified networks are also included in
modelState. As all nodes from the Spatial Layer in a Moore Neighborhood of the agent, provided
that the corresponding raster is listed in the network parameter.

The state of nodes and edges of the Interagent Layer which have a type listed in invariantTypes
are retained and cannot be changed by the agents in this transition. In the case that an agent returns
an entity of an invariantTypes in the transition function, this entity will be discarded.

The following shows the visible model state for the agent with the ID BUYER1 and the associated
network KNOWN_SELLERS:

simCopy <- as.environment(as.list(sim, all.names=TRUE))
showVisibleState <- function(agent, type, modelState) {
if (agent$ID == "BUYER1") {
print (modelState)

}
applyTransition(simCopy, showVisibleState, "KNOWN_SELLERS")

$BUYER

A tibble: 0 x 6

... with 6 variables: PE <dbl>, ID <chr>, alpha <dbl>, B <dbl>, x <dbl>,
y <dbl>

$SELLER
A tibble: 2 x 4
PE ID P sum_y
<dbl> <chr> <dbl> <dbl>
1 2 SELLER2 0.552 0
2 5 SELLERS5 1.27 0

$KNOWN_SELLERS

A tibble: 2 x 2
fromID toID
<chr> <chr>

1 SELLER2 BUYER1

2 SELLER5 BUYER1

$BOUGHT _FROM
NULL

$0BSERVER
A tibble: 0 x 3
... with 3 variables: p <dbl>, sum_x <dbl>, sum_y <dbl>

$MODELPARAMS
A tibble: 1 x 4
numBuyer numSeller knownSellers numPEs
<dbl> <dbl> <dbl> <dbl>
1 50 5 2 5

4.1 calcDemand

The first transition function we implement calculates the demand for the goods = and y as shown
in equation (2). The fact that the state is reconstructed, not modified, means that agents that do
not apply this transition need to simply return their state, as will be seen for sellers below.

In the case that the agent is a BUYER, one of the available sellers is selected using the sample_n
function. Then the agent updates its demand for the goods x and y and adds the new state to the
BUYERs of the overall new model state.

The agent also adds an edge to the BOUGHT _FROM network, which is then used in the next transition
function by the sellers to sum up the demand and calculate the new price.

The KNOWN_SELLERS network is constant, so we will add KNOWN_SELLERS to the list of invariantTypes
when applyTransition is called. As the sellers do not change their state, SELLER will be also added
to invariantTypes

calcDemand <- function(agent, type, modelState) {
if (type == "BUYER") {
seller <- modelState$SELLER 7>/, sample_n(1)
agent$x <- agent$B * agent$alpha
agent$y <- agent$B * (1 - agent$alpha) / seller$p
list("BUYER" = agent,
"BOUGHT _FROM" = tibble(fromID = agent$ID, toID = seller$ID))

4.2 calcPrice

In the calcPrice transition function, the sellers summarise all the goods x and y they sold. As in
their model state there are only the buyers which have created a link in the BOUGHT _FROM network,
they can do this by selecting the x and y columns from the modelState$BUYER tibble and then
calculate the sum for those rows. Then the price is determined as shown in equation (3).

The network BOUGHT_FROM is only constructed temporarily for this transition function, so no
agent returns an edge of this network and it will be also not added to the invariantTypes, so this
parameter will be ¢ (BUYER,KNOWN_SELLERS) to retain those agents and edges for the next iteration
of the simulation.

calcPrice <- function(agent, type, modelState) {
if (type == "SELLER") {
quant <- modelState$BUYER 7>J select(x, y) %>/ summarise_all(sum)
agent$sum_y <- quant$y
agent$p <- if (quant$x > 0) { quant$y / quant$x * agent$p }
else { agent$p }
list ("SELLER" = agent)

We could now run the simulation for e.g. ten iterations by a simple for loop:

for (i in 1:10) {
applyTransition(sim,
transitionFunction = calcDemand,
network = "KNOWN_SELLERS",
invariantTypes = c("SELLER","KNOWN_SELLERS"))
applyTransition(sim,
transitionFunction = calcPrice,
network = "BOUGHT_FROM",
invariantTypes = c("BUYER", "KNOWN_SELLERS"))

However, in this case we could only inspect the model state after the ten iterations, as the sim
environment does not store the intermediary model states.

5 Observer

This is where the previously created empty OBSERVER tibble will be used: in each iteration, we add
a row to this tibble.

The model state is distributed over different (currently virtual) processing entities. You can see
this by calling sim$getExplicitLayer (), this will return a list with the length numPEs from our
model parameters. We have e.g. on our first (virtual) processing entity the following part of the
model state:

| sim$getExplicitLayer () [1]

[[1]1]

[[1]1]1$BUYER
A tibble: 10 x 6
PE ID alpha B X y

<dbl> <chr> <dbl> <dbl> <dbl> <dbl>

1 1 BUYER1 0.949 17 16.1 0.792
2 1 BUYER6 0.362 58 21.0 55.2
3 1 BUYER11 0.343 18 6.18 17.6
4 1 BUYER16 0.591 12 7.09 5.77
5 1 BUYER21 0.543 80 43.4 55.5
6 1 BUYER26 0.184 81 14.9 60.4
7 1 BUYER31 0.309 28 8.66 17.7
8 1 BUYER36 0.620 19 11.8 6.60
9 1 BUYER41 0.658 20 13.2 8.02
10 1 BUYER46 0.207 31 6.41 28.9
[[111$SELLER
A tibble: 1 x 4
PE ID p sum_y
<dbl> <chr> <dbl> <dbl>
1 1 SELLER1 0.413 195.

[[1]1]$KNOWN_SELLERS
A tibble: 20 x 2
fromID +toID
<chr> <chr>
SELLER2 BUYER1
SELLERS5 BUYER1
SELLER1 BUYERG6
SELLER2 BUYERG6
SELLER1 BUYER11
SELLER5 BUYER11
SELLER1 BUYER16
SELLER4 BUYER16
SELLER1 BUYER21
SELLER2 BUYER21
SELLER4 BUYER26
SELLER5 BUYER26
SELLER2 BUYER31
SELLERS5 BUYER31
SELLERS5 BUYER36
SELLER3 BUYER36
SELLER3 BUYER41
SELLER4 BUYER41
SELLER4 BUYER46
SELLER3 BUYER46

© 00 ~NO O WN -

[S I e e e e e o S o
O O 00 NOO b WwNDE~- O

[[1]]$BOUGHT FROM
A tibble: 0 x O

The framework does the parallelization mostly automatically. Until now we ignored this com-
pletely, except when adding the numPEs to our model parameters. However, updating the observer
is now not as easy as in the non-distributed case. Therefore, there is the helper function reduce in

the environment returned from the initSimulation call. This function has the form reduce (type,
agentFunc, aggregationFunc). If we want, e.g., the minimal « of all buyers, we can call:

| sim$reduce ("BUYER", "alpha", min)

[1] 0.03635454

So type is the type of the agents for which we want to aggregate some information from the
states. agentFunc is a function that gets the state of a single agent and returns a single value.
Thereby, a single column name like the "alpha' is a shortcut for function (agent){ agent$alpha
}. The aggregationFunc is a function that gets a list of the values return by the agentFunc as
argument.

For our model, we want to calculate the average price. As sellers have almost certainly sold dif-
ferent amounts of good y, we cannot just call reduce ("SELLER", "p", mean), but need to calculate
D Py,

Y

current is the current state of the "UBSERVER" mnode
we add an new row to this, which has the demand and average price as columns
observeFunc <- function(current, sim) {
current 7%>%
bind_rows(
tibble(
sum_x = sim$reduce("BUYER", "x", sum),
sum_y = sim$reduce("BUYER", "y", sum),
p = sim$reduce("SELLER",
function(agent) { agent$p * agent$sum_y 1},
sum) / sim$reduce("SELLER", "sum_y", sum)

))

The thus defined observeFunc can then be used in the updateGlobal function:

\sim <- updateGlobal(sim, "OBSERVER", observeFunc)

6 Simulation run

We can now run and observe simulations, e.g., accessing the OBSERVER table via sim$global $0BSERVER
and creating a plot from this table, which shows the excess demand for good z. To conclude, we
obtain a visualisation as shown below:

sim <- initSimulation(agentTypes = agentTypes,
edgeTypes = edgeTypes,
modelParams = modelParams,
stateInitFunc = initModel,
globalTypes = "OBSERVER",
globalInitFunc = initObserver)

for (i in 1:10) {
applyTransition(sim,
transitionFunction = calcDemand,
network = "KNOWN_SELLERS",
invariantTypes = c("SELLER","KNOWN_SELLERS"))
applyTransition(sim,
transitionFunction = calcPrice,
network = "BOUGHT_FROM",
invariantTypes = c("BUYER", "KNOWN_SELLERS"))
updateGlobal(sim, "OBSERVER", observeFunc)
}

plot <- sim$global$0BSERVER 7>
rowid_to_column("step") %>%
ggplot(aes(x = step, y = sum_x - sum_y)) + geom_line()

print (plot)

-200-

Ly

X - sum

1-400-

sum

-800-

-800-

step

With this we end the tutorial.
Feel free to play and experiment with the code!

10

	Prerequisites
	Model Example
	Model Background
	Code

	Initialization
	stateInitFunc
	globalTypes and globalInitFunc

	Transition functions
	calcDemand
	calcPrice

	Observer
	Simulation run

