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1 The Platform
This text is supplementary material for computer code (included in the text) giving a proof of
concept for the GCF computational platform for DT models. The platform offers a graph dynamical
system framework for ABM simulations. The code and the present text are available at https:
//globalclimateforum.org/GCF-Platform-for-DT-Models. The proof-of-concept code is written
in R, more elaborate versions with other languages will follow. Previous work on the concept can
be found at https://globalclimateforum.org/2018/09/26/.

The agents on the platform can be of different types δa ∈ ∆A, where ∆A is the set of all agent
types. For each agent type δa we have a different set of state variables xδa,1, . . . , xδa,n, where each
xδa,i is element of a (potentially) different set of possible states Xδa,i. So the state space for an
agent of type δa is Θδa = Xδa,1 × . . .×Xδa,n.

The agents can be set into relation via a directed multi-graph, whereby the agents are represented
by vertices. The edges in this graph can also be associated with states. We construct the state space
for the edges in the same way as for the vertices/agents.

The overall state space of the system at time t is then Θt =
∏
δa∈∆A

Θnδa,t
δa

×
∏
δe∈∆E

Θnδe,t
δe

where ∆E is the set of all edge types, nδa,t is the number of agents of type δa and nδe,t is the
number of edges of type δe in the system.

Let Ψ be the set of all agents. Each agent has a transition function (or a set of transition
functions) that construct a set of agents and edges, so we have:

tψ : Θt → Θψ,t (1)
where Θψ,t =

∏
δa∈∆A

Θnφ,δa,t
δa

×
∏

δe∈∆E

Θnφ,δe,t
δe

where nφ,δ,t is the number of agents/edges that the agent φ has constructed in her transition
function. We can then combine individual transition functions to a comprehensive transition function
by concatenating the constructed elements.

t = (tψ1 , . . . , tψnt ) : Θt → Θt+1 (2)

So, in contrast to the usual object-oriented ABM frameworks, the state of objects is not modified
by the transition function, but completely recreated by the transition function.

In the code presented here as proof of concept, the model state Θ is implemented in the form of
an associative array with the types δa and δe as keys and the corresponding states of the type Θδa

and Θδe respectively in the form of tables as values.
In addition to the model state, we usually need model parameters for a simulation and want to

observe certain results, which however have no influence on the simulation itself. In this framework,
the model parameters can be of any structure P and the observed results can be of any structure O
(but in the example implementation both are tables only).

The framework expects that the following functions are defined:
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• initState: P → Θ0

• initObserver: P → O

• observe: (O,Θt)→ O

• and a set of transition functions.

1.1 Parallelism
The system described above should be distributed among different processing elements (PE) in such
a way that each PE only receives a subset of the overall system state. Therefore, a transition function
is always connected to a network formed by the edges of a type δe ∈ δE . For a single agent ψ only
the state of agents ψ̂i is available for which an edge (ψ̂i, ψ) exists in the associated network of the
transition function. Even a single agent does not know the complete graph, but only the edges where
it is located at the tail or head.

Agents are assigned to processing elements (PE). Each PE does only know some part of the
overall model state, namely:

• The state of the agents on this PE

• The edges of the graph, where an agent is on tail or head position

• While a transition function is called: The state of agents on the tail position of the network
associated with the transition function

To calculate a transistion function, the following steps are taken:

• First we must ensure that for all edges of the network associated with the transition function,
the state of agents on the tail position is known on the PE of the agents on the head position.

• Then the transition function can be called. We construct the new model state by gathering
the returned lists of agents and edges.

• For the returned graph by agents on PE x we check which agents on the head or tail position
are on another PE y, and send those edges to this PE.

• Since PE y may not know the PE of the agent on the other edge position (e.g. agent 1 on PE
1 knows agent 2 on PE 2 and agent 3 on PE 3 and adds an edge between these two. PE 2 may
not know PE of agent 3), PE x sent this information also in form of a (agentID, PE) list.

1.2 Implementation
The following is an implementation of this approach, in which the parallelism is simulated by creating
a separate list for each simulated PE. The lists are stored in the variable modelStateDistributed.
The parameters of the transition functions only include a subset of modelStateDistributed[[i]],
this ensures that the agent PE does not access the "memory" of another PE.

We start with the helper function mapAgentsToPEs, that takes a non-distributed model state
and creates a distributed version.

mapAgentsToPEs <- function(modelState, agentTypes, numPEs) {
edgeTypes <- modelState %>% names %>% discard(. %in% agentTypes)

## Store which agent was moved to which PE
PElist <- tibble(ID = character(),

PE = integer())

## Prepare the distributed data structures (the indices are the different PEs)
modelStateDistributed <- vector("list", numPEs)
PElists <- vector("list", numPEs)
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for (i in 1:numPEs) {
PElists[[i]] <- tibble(ID = character(),

PE = integer())
}

## Distribute the agents
for (a in agentTypes) {

## We group the agents by their rowid, so that each PE gets the
## same number (plus/minus one) of agents
modelState[[a]] %<>% rowid_to_column("PE") %>%

mutate(PE = ((PE - 1) %% numPEs) + 1)
PElist %<>% bind_rows(modelState[[a]]) %>% select(ID, PE)
perPE <- modelState[[a]] %>% split(.$PE)

for (i in 1:numPEs) {
modelStateDistributed[[i]][[a]] <- perPE[[i]]
PElists[[i]] %<>% bind_rows(modelStateDistributed[[i]][[a]]) %>%

select(ID, PE)
}

}

## Distribute the edges
for (e in edgeTypes) {

if (nrow(modelState[[e]]) > 0) {
for (i in 1:numPEs) {

## Find for each PE the edges where an agent of this PE is involved ..
fID <- modelState[[e]] %>% filter(fromID %in% PElists[[i]]$ID)
tID <- modelState[[e]] %>% filter(toID %in% PElists[[i]]$ID)
## ... and add those edges to the distributed state
modelStateDistributed[[i]][[e]] <- bind_rows(fID, tID) %>% unique
## Also add the PEs of the agents on the other edge pos to the PElists
PElists[[i]] %<>% bind_rows(fID %>% transmute(ID = toID) %>%

left_join(PElist, by = "ID")) %>% unique↪→

PElists[[i]] %<>% bind_rows(tID %>% transmute(ID = fromID) %>%
left_join(PElist, by = "ID")) %>% unique↪→

}
}

}

list(modelStateDistributed, PElists)
}

The enhanceAgentStates function ensures that the state of agents at the tail position of the
network associated with the next transition function is available on the PEs of the agents at the
head position of the edges. This function is called before the transition function itself, which then
gets the returned extendend model state.

enhanceAgentStates <- function(modelStateDistributed, PElists, agentTypes,
edgeType) {↪→

modelStateEnhanced <- modelStateDistributed

numPEs <- modelStateDistributed %>% length

for (i in 1:numPEs) {
## We allow the creation of Networks while the simulation is running
if (! is.null(modelStateDistributed[[i]][[edgeType]]) &&

nrow(modelStateDistributed[[i]][[edgeType]]) > 0) {
## agentPEmap is a tibble(fromID, toID, PE of toID agent)
agentPEmap <- modelStateDistributed[[i]][[edgeType]] %>%

select(fromID, toID) %>%
left_join(PElists[[i]], by = c("toID" = "ID")) %>%
unique
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for (a in agentTypes) {
## iterate over the other PEs
for (j in (1:numPEs %>% discard(. == i))) {

## find the agents that must be send to other PEs ...
agentsIDtoSend <- agentPEmap %>% filter(PE == j) %>% select(fromID)
agentsToSend <- agentsIDtoSend %>%

inner_join(modelStateDistributed[[i]][[a]], by = c("fromID" = "ID"))
%>%↪→

unique %>%
rename(ID = fromID)

## ... and add them to the state of this other PE
modelStateEnhanced[[j]][[a]] %<>% bind_rows(agentsToSend)

}
}

}
}

modelStateEnhanced
}

distributeNetworkState takes the result of a transition function, and sends the edges to the
PEs of the agents on the head or tail position.
distributeNetworkState <- function(modelStateDistributed, PElists, edgeTypes) {

modelStateEnhanced <- modelStateDistributed

numPEs <- modelStateDistributed %>% length
## create new empty lists
newPElists <- PElists %>% map(~ .x[0,])

for (i in 1:numPEs) {
for (e in edgeTypes) {

## We allow the creation of Networks while the simulation is running
if (! is.null(modelStateDistributed[[i]][[e]]) &&

nrow(modelStateDistributed[[i]][[e]]) > 0) {
## Create two version of the edge tibble, ~matchFrom~ is extended with
## the PEs of the tail, ~matchTo~ with the PEs of the head agents
matchFrom <- inner_join(modelStateDistributed[[i]][[e]],

PElists[[i]], by = c("fromID" = "ID"))
matchTo <- inner_join(modelStateDistributed[[i]][[e]],

PElists[[i]], by = c("toID" = "ID"))
## sendNetworkTable is a tibble: fromID toID PE
sendNetworkTable <- bind_rows(matchFrom, matchTo)
## sendPElist is a tibble: ID, PE, toPE
sendPElist <- bind_rows(sendNetworkTable %>% select(ID = fromID,

toPE = PE),
sendNetworkTable %>% select(ID = toID,

toPE = PE)) %>%
inner_join(PElists[[i]], by = "ID")

## Use the send... tibbles to distribute the edges to the PEs
## and also to send the (agentID, PE) information to those PEs
for (j in 1:numPEs) {

if (i != j) {
modelStateEnhanced[[j]][[e]] %<>%

bind_rows(sendNetworkTable %>% filter(PE == j) %>% select(-PE))
}
newPElists[[j]] %<>%

bind_rows(sendPElist %>% filter(toPE == j) %>% select(-toPE)) %>%
unique

}
}

}
}

4



list(modelStateEnhanced, newPElists)
}

simulate combines all these pieces. transform 1 takes one agent type and iterates over the
agents of this type, calling for each agent one of the transition functions. Inside of transform we
use the limitState 2 function to ensure, that only the state of agents in the tail position of the
associated network is accessable.

consolidate 3 gets the collected output of transform from all agents in the system, so
newModelState is a list (with the agent types as keys) of lists (with the agents as keys) of ta-
bles (the tables returned by a transition function), and reduces this to a single table per agent type,
our new state Θt+1.

simulate <- function(agentTypes, modelParams,
stateInitFunc, observerInitFunc, observerFunc,
tFuncs) {

## the edgeTypes are the associated network of the transition functions
edgeTypes <- tFuncs %>% map(~ .x[[2]])

numPEs <- modelParams$numPEs

transform <- function(type, agents, modelState, tFunc, edgeType) { # 1
limitState <- function(agent) { # 2

incoming <- modelState[[edgeType]] %>% filter(toID == agent$ID)

## reduce the agent states to the agents on the networks tail position
agentTables <- agentTypes %>%

map(~ modelState[[.x]] %>% filter(ID %in% incoming$fromID)) %>%
setNames(agentTypes)

## reduce the network to edges where the agent is on tail or head position
edgeTables <- edgeTypes %>%

map(~ modelState[[.x]] %>%
(function(x) { if(is.null(x) nrow(x) == 0) NULL else

{ x %>% filter(agent$ID == fromID |
agent$ID == toID)}})) %>%

setNames(edgeTypes)

c(agentTables, edgeTables)
}

agents %>% transpose %>% map(~ tFunc(as_tibble(.), type, limitState(.x)))
}

consolidate <- function(newModelState) { # 3
flattenLists <- newModelState %>% flatten

c(agentTypes, edgeTypes) %>%
map(~ { flattenLists %>% map(.x) %>% bind_rows }) %>%
setNames(c(agentTypes, edgeTypes))

}

## create the initial distributed model state and PElist
modelStateFull <- stateInitFunc(modelParams)
distributed <- mapAgentsToPEs(modelStateFull, agentTypes, numPEs)
modelStateDistributed <- distributed[[1]]
PElist <- distributed[[2]]

observerState <- observerInitFunc(modelParams)

## run the simulation
for (. in 1:modelParams$numSteps) {
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for (s in tFuncs) {
enhancedModelStateD <- enhanceAgentStates(modelStateDistributed, PElist,

agentTypes, s[[2]])↪→

for (i in 1:numPEs) {
modelStateDistributed[[i]] <- agentTypes %>%

map(~ transform(.x, modelStateDistributed[[i]][[.x]],
enhancedModelStateD[[i]], s[[1]], s[[2]])) %>%↪→

consolidate()
}
d <- modelStateDistributed %>% distributeNetworkState(PElist, edgeTypes)
modelStateDistributed <- d[[1]]
PElist <- d[[2]]

}
observerState <- observerFunc(observerState, modelStateDistributed)

}

observerState
}

2 A Model Example
2.1 Model description
We have a simple but volatile market with n buyers, m sellers, and two goods called x and y. Each
seller sells both commodities, buyers buy both commodities from a single seller, but at each step the
buyer randomly selects the seller from a fixed subset of all sellers. We are only interested in relative
prices, so the price for good x is set to 1, the price for good y is p.

At each step, each buyer has a fixed budget B for buying the commodities. The quantities are
choosen using a Cobb-Douglas utility function:

max
x,y

u(x, y) = xα · y1−α (3)

s.t.: x+ y · p ≤ B

The solution of this optimization is:

x = B · α (4)

y = B · (1− α)
p

For illustrative reasons, we neglect production except for the assumption that x and y are joint
products, so that the seller tries to find a price where x = y. In the case of a single buyer, the
solution is p = 1−α

α . But in our case, the sellers are facing different buyers with different preferences
α and a different budget B. So they start with a random price and adjust that price at each time
step:

pt = dy
dx
· pt−1 (5)

where dx =
∑

b∈buyers
xb, dy =

∑
b∈buyers

yb

It’s easy to see that in the single buyer case, this will lead to p = 1−α
α after a single step.

2.2 Implementation
We have two networks, one is fixed and describes the sellers known to a single buyer. Since the
direction of an edge determines the flow of information and the buyer needs the price information
to calculate his demand, it is a network from sellers to buyers. We call this network KNOWN_SELLER.
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The second network is constructed at each step in the function calcDemand, this network is
called BOUGHT_FROM and describes from which seller a buyer bought something, so it will go from
the buyers to the sellers.

As the BOUGHT_FROM networks will be constructed in the simulation itself, we do not need to
worry about it in the stateInitFunc.

2.3 Init Functions
initAgents <- function(modelParams) {

nb <- modelParams$numBuyer
ns <- modelParams$numSeller
list(

"BUYER" = tibble(
alpha = runif(nb),
B = runif(nb, max = 100) %>% ceiling,
x = 0,
y = 0,
ID = paste0("BUYER", 1:nb)

),
"SELLER" = tibble(

p = runif(ns, min = 0.5, max = 1.5),
ID = paste0("SELLER", 1:ns)

)
)

}

initNetwork <- function(modelParams, modelState) {
sampleSellers <- function() {

sample_n(modelState$SELLER, modelParams$knownSellers) %>% pull(ID)
}

list("KNOWN_SELLERS" =
modelState$BUYER$ID %>%
map(~ tibble(fromID = sampleSellers(),

toID = .x)) %>%
bind_rows)

}

initState <- function(modelParams) {
agentState <- initAgents(modelParams)
c(agentState, initNetwork(modelParams, agentState))

}

initObserver <- function(modelParams) {
tibble(

sum_x = numeric(),
sum_y = numeric()

)
}

The BOUGHT_FROM network will be available after calcDemand, because every buyer returns an edge
to the seller from whom he bought the goods. The KNOWN_SELLER network is constant, but must be
recreated in this proof of concept through each transition function. However, this is easily done by
making each agent return all edges where itself is at the head. The sum of these edges then results
in the KNOWN_SELLER network.

The seller does nothing else but return its state. Otherwise the model state after calling the
function calcDemand would be without any seller.

calcDemand <- function(agent, type, modelState) {
seller <- modelState$SELLER %>% sample_n(1)
switch(type,
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"BUYER" = {
agent$x <- agent$B * agent$alpha
agent$y <- agent$B * (1 - agent$alpha) / seller$p
list("BUYER" = agent,

"BOUGHT_FROM" = tibble(fromID = agent$ID, toID = seller$ID),
"KNOWN_SELLERS" = modelState$KNOWN_SELLERS %>% filter(toID ==

agent$ID))↪→

},
"SELLER" = {

list("SELLER" = agent)
})

}

In the transition function calcPrice, the network KNOWN_SELLER can be treated as in calcDemand,
and the network BOUGHT_FROM can be ignored, since it is rebuilt in the next calcDemand call.

calcPrice <- function(agent, type, modelState) {
quant <- modelState$BUYER %>% select(x, y) %>% summarise_all(sum)
switch(type,

"BUYER" =
list("BUYER" = agent,

"KNOWN_SELLERS" = modelState$KNOWN_SELLERS %>% filter(toID ==
agent$ID)↪→

),
"SELLER" = {

agent$p <- if (quant$x > 0) { quant$y / quant$x * agent$p } else {
agent$p }↪→

list("SELLER" = agent)
}
)

}

The framework does the parallelization mostly automatically, it is not necessary to keep the
parallelization in mind while writing the transition functions or the initialization of the model state
remains the same.

The observer on a PE, however, can only observe the part of the model state which is exactly
on this PE, which must be considered by the modeller. The framework to be developed, however,
will provide functions that support him, similar to the following sumD function.

observeDistributed <- function(observerState, modelStateDistributed) {
sumD <- function(type, var) {

modelStateDistributed %>% map(type) %>% map(var) %>% unlist %>% sum
}

observerState %>% add_row(
sum_x = sumD("BUYER", "x"),
sum_y = sumD("BUYER", "y")

)
}

Finally, here is a run of this example model. The result of the simulated function is a table with
the total demand for x and y for each time step. We plot a time series of the difference of this
demand, which in equilibrium should be exactly 0.

runExampleModel <- function() {
simulate(agentTypes = c("BUYER", "SELLER"),

modelParams = tibble(numBuyer = 20, numSeller = 5, knownSellers = 2,
numSteps = 20, numPEs = 5),

stateInitFunc = initState,
observerInitFunc = initObserver,
observerFunc = observeDistributed,
tFuncs = list(c(calcDemand, "KNOWN_SELLERS"),
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c(calcPrice, "BOUGHT_FROM"))
) %>%

rowid_to_column("step") %>%
ggplot(aes(x = step, y = sum_x - sum_y)) + geom_line()

}

runExampleModel()

Figure 1: A volatile market with joint production
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