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Systemic Risks: Theory and Mathematical Modeling

Klaus Lucas, Ortwin Renn,* and Carlo Jaeger*

In a globally connected world, new opportunities are associated with new
types of risks. These new types of risks do not respect national boundaries nor
are they restricted to particular locations or systems. Instead, they are
characterized by contagion and proliferation processes, frequently on the
basis of a network structure, with the result that a seemingly harmless local
event is able to cause a complete system collapse. The proposal has been
made to refer to these types of new risks as systemic risks. It turns out that
key phenomena associated with systemic risks can quite naturally be
categorized and analyzed in terms of notions originally established in the
natural sciences, such as those of chaos, order, and self-organization, or, more
concisely, of dynamic structure generation in complex open systems. In this
Essay, the claim is made that there is a homomorphism within the dynamic
structure generation across very different domains of systemic risks.
Furthermore, there are structural similarities between complex structures in
general, and systemic risks in particular. Based on this assumption, one can
use established methodologies of complexity science to reveal general
macroscopic patterns that seem to govern the dynamics of complex systems.

1. Introduction

The history of the last four decades has been a success story
in terms of conventional risk management. Conventional risks
are bounded in time and space, they can be well described in
terms of functional relationships between extent of expected
losses and probability of occurrence.[1] Most importantly, conven-
tional risks are not highly complex (however often complicated
to understand), they are not highly interconnected with other
types of risks and they can be effectively managed by technical
and organizational measures. The success of conventional risk
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management is documented inmany statis-
tical data. If one takes the example of Ger-
many, the home country of the authors, the
number of fatal accidents at work decreased
from almost 5000 in 1960 to less than 500 in
2014; the number of traffic accidents from
22 000 in 1972 to 3700 in 2014, the number
of fatal heart attacks and strokes decreased
from 109 cases per 100 000 to 62 in the time
period between 1992 and 2002.[2] In addi-
tion, the number of chronic illnesses as well
as fatal diseases from environmental pollu-
tion or accidents steadily declined over the
past three decades.
The picture becomes, however, less favor-

able if one looks at globally interconnected,
nonlinear risks such as those posed, for ex-
ample, by climate change or the global fi-
nancial system and the closely related grow-
ing inequality between rich and poor. In
order to take account of this situation, the
Organisation for Economic Co-operation
and Development (OECD) introduced the
new category of “systemic risk”.[3] A widely

cited definition of a systemic risk was provided by Kaufman
und Scott (2003). “Systemic risk refers to the risk or probabil-
ity of breakdowns in an entire system, as opposed to break-
downs in individual parts or components, and is evidenced by
co-movements (correlation) among most or all parts”.[4] This def-
inition assumes that the targeted system represents a vital service
to society such as energy or financial stability. If we take a sim-
ple device such as a car or a sewing machine, a total collapse of
such a technological device would not qualify as a systemic risk
(Renn et al.[5]). Hence, systemic risk refers to a potential collapse
of a system of potentially global importance and criticality to ser-
vices that humans urgently need. This dimension of a large po-
tential threat within a complex web of interacting elements dis-
tinguishes systemic from other types of risk.
Renn et al.[5] emphasize four major properties of systemic

risks. They are: 1) transboundary, 2) highly interconnected and
intertwined leading to complex causal structures, 3) nonlinear in
the cause–effect relationships showing often unknown tipping
points or tipping areas, and 4) stochastic in their effect structure.
One of the main features of systemic risks include ripple effects
beyond the domain in which the risks originally appeared and
the threat of a multiple system breakdown that would affect mul-
tiple services to society. They may be felt in a wide range of sys-
tems seemingly well-buffered from each other, like the real estate
and the health system, inflicting harm and damage in domains
far beyond their own. Industrial sectors, for example, may suffer
significant losses as a result of a systemic risk as we witnessed
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in the financial crisis in the aftermath of the Lehman Brothers
collapse.
The main problem is that it is often difficult to predict when

a system will suffer a breakdown or collapse. Threats to the sys-
tem, such as climate change, may be hidden in small incremen-
tal effects that provide no hint about when thresholds have been
reached. Or a collapse may occur due to a domino effect where
a small glitch is released that affects multiple elements within a
system or even multiple systems in parallel, thereby amplifying
the overall risk.[6]

Systemic risks pose serious challenges for risk assessment
and risk management because they are not amenable to the
reductionism of the standard risk assessment model. They re-
quire a more holistic approach to hazard identification, to risk
assessment, and to risk management, because they are complex,
stochastic, and nonlinear. This means that it is difficult to trace
the connections between causes and effects, to understand the di-
rect impacts of human actions against a background of random
changes, and to start learning from simulation rather than from
trial and error. Risk analysis for systemic risks must focus on in-
terdependencies, ripple and spill-over effects, and other nonlin-
ear dynamics that initiate impacts that cascade between other-
wise unrelated risk domains. Governing systemic risks presents
specific and unique challenges, challenges magnified by the re-
ality that systemic risks vary considerably across and within sys-
tems; not two are exactly alike.

2. Theory

The notion of systemic risks is generic to describing phenomena
of an entire breakdown of whole systems macroscopically due to
reinforcing feedback actions of agents on the microlevel. Here,
agents, in a most general sense, are conceptualized as elements
of a system that interact among each other or with the environ-
ment. In technical systems, agents may be part of a technical
infrastructure such as control and generation units in the elec-
trical grid, the systemic risk would then be a breakdown of the
grid as a whole. In ecosystems, agents such as harmful chem-
icals in interaction with a fish population in a river constitute
the systemic risk of irreversible destruction of the population. In
the global climate system, interacting agents comprise the sun
radiation, clouds, carbon dioxide, and the surfaces of earth and
water, which in conjunction with each other constitute the sys-
temic risk of climate change. In social systems, humans are the
agents interacting among themselves and with the system´s envi-
ronment, with systemic risks manifesting themselves in radical
public movements up to social unrest and revolutions with the
result, for example, of mass migration phenomena.[7] The last ex-
ample is instructive also because what may be a systemic risk for
some agent may be an opportunity for others—consider, for ex-
ample, the breakdown of a dictatorship or a Mafia racket. In the
present contribution, we do not discuss the theory of how differ-
ent agents may evaluate critical events but focus on the dynamics
leading to such events.
It turns out that the rather diverse and chaotic elementary pro-

cesses of the agents on the microlevel in the various domains
surprisingly order themselves on the macrolevel to widely uni-
versal dynamic patterns, which can be formulated in terms of
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simple macroscopic parameters. The dynamic evolution of these
patterns, and thus the associated systemic risks, may be stud-
ied by differential equations, iterated functions, by agent-based
modeling, and by complex network theory. These mathemati-
cal manifestations, while originally developed for model systems
of physics and chemistry, seem to be universally valid in all do-
mains, including the social sciences.
Clearly, when it comes to making quantitative predictions of

a system´s dynamic behavior, the differences between the vari-
ous systems below the universal, conceptual, and mathematical
superstructure become relevant. They originate from the specific
interactions of the agents.While quantitative results can easily be
found in some simple model systems of physics and chemistry,
this is more of an exception in more general cases, notably the
social sciences. However, the universal theoretical background
provides helpful clues that help ordering empirical facts, and sug-
gesting types of experiments that promise to bemost fruitful for a
better governance of the dynamic processes that characterize sys-
temic risks. Such an approach may even pave the way for quanti-
tative methods of mathematical modeling for an in-depth study
of the system´s internal mechanisms.

2.1. Elementary Processes at the Microlevel

Looking from an overarching perspective across all domains, sys-
temic risks are macroscopic phenomena of dynamic structure
generation resulting from actions of agents on the microlevel.
In physics and chemistry, such phenomena have been studied in
detail on the basis of solid scientific and mathematical grounds
and have generated insight into the elementary processes on the
microlevel. Prototypes of such studies in physics are the theory
of synergetics developed by a generalization of the theory of laser
light[8] and the theory of dissipative structures as emerged from
nonequilibrium thermodynamics, in particular, with application
to the generation of chemical structures.[9–11]

We learn from those studies that dynamic structure genera-
tion in the systems of physics and chemistry require first open
systems capable of exchange of materials and energy with the en-
vironment and second system complexity in the sense of the ele-
ments being capable of feedback interactions resulting in circular
causality. The characteristics of complexity are thus strong non-
linear interactions between the relevant agents, such as photons
and atoms in a laser or molecules capable of autocatalytic reac-
tions in a chemical system, in combination with external impact
quantified by suitable control parameters. Such control parame-
ters of the referred-to model systems are the pumping energy in
a laser or the influx of chemicals in appropriate reactors. When
the control parameters exceed threshold values, the system is
brought into a state of instability. In such states, the system tests
its various intrinsic modes of macroscopic behavior, such as the
various forms of light waves in a laser or of chemical patterns in
an autocatalytic reactor. A stability analysis then reveals that most
modes behave conservatively in the sense that they respond with
small changes to small changes of perturbations, without any
macroscopic change of the system state. However, some modes,
in competition with the rest, grow exponentially to amplitudes
which react back to the collective behavior of the system elements
and forces the system into a new and unforeseen state.

Original states thus collapse in the neighborhood of points
of instability. New ordered states organize themselves on the
basis of circular causality between the microelements and the
macrolevel. Thus, in a laser, a particular monochromatic light
wave emerges out of the many possible light waves of standard
lamp light by competition as the new structure. In a chemical
reactor, particular patterns emerge from an originally homoge-
neous distribution of chemicals, such as rings or stripes or also
regular dynamic changes of patterns such as a chemical clock.
These modes winning the competition are referred to as order
parameters, describing the new macroscopic order in the sys-
tem, such as static or, in particular, dynamic structures and pat-
terns. So, in a laser, the particular optical wave would be an order
parameter, while in chemical structure generation it would be
the emerging dissipative structure. The macrodynamics of the
system is formulated in terms of the order parameters, which
for the simple model systems can be cast into mathematical
terms.
A considerable decomplexification as compared to the mi-

crolevel is associated with the formulation of the system´s behav-
ior in terms of order parameters. They are real and thus measur-
able macroscopic phenomena, not just mathematical concepts,
and their number is much smaller than those that determine the
state of the system on the microlevel. Due to this information
compression, the dynamics of the order parameters agrees for
widely different systems with otherwise no relationship between
themwhatsoever. This is the formal reason formany analogies in
the basic patterns of dynamic behavior in the various domains,
referred to here as homomorphism. The dynamics on the mi-
crolevel and on the macrolevel proceed on entirely different time
scales, in the sense that order parameters change much slower
than the rapidly changing and rather individual microstates. The
system-specific microdynamics may then be considered as fluc-
tuations which relax to their equilibrium values almost immedi-
ately and thus can be neglected in the analysis of themacroscopic
dynamics of the system.

2.2. Empirical Evidence for Homomorphism

The model systems of physics and chemistry, although com-
plex, are controlled by relatively simple and well-understood
interaction laws. Clearly, in the systems where systemic risks are
relevant for the society quite different and much more compli-
cated interaction laws are in effect, with nonlocal, adaptive deci-
sion interactions including memory effects in human societies
as the most complex situation.
Fortunately, there is overwhelming empirical evidence that the

fundamental patterns of dynamic behavior do not depend cru-
cially on details of the agent´s interactions. This has the remark-
able effect that systems with very different types of agents show
rather similar patterns of dynamical behavior. We refer to this
phenomenon as homomorphism. The mathematical origin of
this empirical fact is identified by the study of the elementary pro-
cesses on the microlevel of the model systems. It is shown there
that the dynamics of systems can be quite generally formulated in
terms of order parameters with rather universal dynamics. While
these order parameters in the general case do not arise out of rig-
orous theory, they can be established from empirical observation
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of a system. In particular, this homomorphism paves the way for
a universalmathematical formulation of systemic risks where the
individualities of the systems are taken care of by specific formu-
lations of the microdynamics.
Most fundamentally, dynamic structures, associated with sys-

temic risks in all domains, are phenomena of emergence, typ-
ically out of system instability. In all domains, they are collec-
tive effects resulting from the elementary actions of the agents
at the microlevel. So, they are only observable at the macroscopic
level, not at the microlevel of the agents. Still, the macroscopic
homomorphism invites looking for homomorphic mechanisms
of structure generation even at the microlevel. Even in socioe-
conomic systems where the agent´s interactions are clearly en-
tirely different from those in the simple model systems, the basic
mechanisms of dynamic structure generation and pattern forma-
tion are pretty much analogous. Here also strong and reinforcing
interactions generate feedback loops and circular causality be-
tween the macroscopic structures and the actions of the agents.
Agents learn and adapt to their environment created by them.
It is frequently the interaction of human individuals as agents
with a field of information from the media, public opinion, or
other sources which stabilizes the structures in socioeconomic
systems. So, local patterns are again able to spread over the whole
system by appropriate information distribution.
Another general phenomenon of dynamic structure genera-

tion observable in all domains is that of tipping and cascading.
In the model systems, it has been established that boundary con-
ditions keeping the system away from the dead state of static
equilibrium and exceeding threshold values may drive a system
into a regime of instability out of which new dynamic structures
may suddenly emerge, such as a laser light wave or a chemical
structure. Similar patterns are found in the study of pandemics
and the spread of disease.[12] Further examples are failures of in-
frastructure, such as the electrical grid,[13] the break-down of a
financial system,[14] or such phenomena as public opinion forma-
tion or economic innovations. Like in the model systems, there
are parameters indicating a region of instability. Generally, such
parameters are nondimensional in nature balancing enhancing
and hindering effects by a suitable combination of external and
internal quantities, such as the ratio of local uprisings to police
interventions in the forefront of revolutions[15] or the size of the
economy to the amount of private debt in the onset of a financial
crisis[16] or the index of conflict-related news before the outbreak
of war.[17]

Finally, it is observable in all domains that the behavior of
the system exhibits an individual history, consisting of an inter-
play between chance and determinism. Examples from socioe-
conomic systems are traffic congestion, political revolution, eco-
nomic competition, or urban settlements. So, the adoption of one
of the alternative technologies within a society or the market suc-
cess of a particular company can be greatly influenced by mi-
nor contingencies about who chooses which technology or which
company at an early stage, which clearly reminds of the butterfly
effect usually observed in chaotic systems. This early choice deter-
mines the further fate of the system and explains the remarkable
success of one technology or one company over others in the end.
Such a path dependence excludes any purely local and momen-
tary origins of systemic risks, for example, such of a stock market
crash[18] or the refugee crisis.[19] It is indispensable to study the

history of the system if adequate understanding of the dynamics
of the system is aimed at.

2.3. Systemic Risks as Phenomena of Complexity

Like the model systems of physics and chemistry, the dynamics
and thus the associated systemic risks in any system can only be
properly understood and analyzed when considered in the frame-
work of complexity science. It then becomes generally clear that
dynamic processes do not develop by some sort of central con-
trol and programming but rather emerge as a result of nonlin-
ear feedback interactions between the agents of a system and its
environment. Traditional concepts of causality and equilibrium
are incompatible with empirical observation and systems behave
often counter-intuitively. The complex system approach realizes
that the emergence of systemic risks in all domains, notably those
in ecology and with human agents, is not to be understood as
the sum of single intentions, but the collective result of nonlin-
ear interactions. A common feature of all nonlinear systems is
the emergence of collective order phenomena. The dynamics is
formulated in terms of order parameters and understood as a se-
quence of phase transitions of a system exchanging material, en-
ergy, and information with its environment. There is plenty of
evidence to prove the necessity to analyze systemic risks in the
framework of complexity science.
A relatively simple but quite instructive example can be taken

from sociobiology and it is that of state-forming insects, such
as ants. In the beginning the state-forming process makes the
impression of an uncoordinated phase of microscopic activity.
However, as first elements of macroscopic structures become
noticeable, the system evolves to an inhomogeneous stationary
state. In this phase, ant colonies seem to form a deterministic
system, each insect following rules of behavior which are cen-
trally controlled, with the result of a remarkably efficient trans-
portation macrostructure of the colony. A closer look, however,
reveals that this structure is the result of many chaotic fluc-
tuations with selection processes among the many modes of
macroscopic transportation behavior resulting in a seemingly sta-
ble macroscopic structure. The associated order parameter is a
particular path network from a resource of food to the nest, as-
sociated with a particular location of the food resource, and rep-
resenting a network of signals between the ants. Thus, this phe-
nomenon of swarm intelligence is based on the interactions be-
tween the ants and at the same time acts back upon them in circu-
lar causality. Again, we identify the typical feedback between the
micro- and the macrolevel of a complex system as the basis for
self-organization and emergence of order. Observation over some
time then makes it clear that the macrostructure may change
spontaneously, similar to the phase transitions discussed above
when some fluctuation induces such a change. Such a fluctuation
may be the discovery of a new food source. Then, the existing
transportation network may become unstable and a new trans-
portation network may establish itself in phase transition. If the
new food source has been overestimated, there is the systemic
risk of disturbing the colony which finally will lead to the parallel
existence of two transportation systems with the associated weak-
ening of the coordinated actions of the ants. There is no simple
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causality, not to speak of an equilibrium state observable in an
ant colony.
A further example is readily available from economics. The

traditional assumption of free market economy is that the inter-
actions of single micro-interests achieve the common macroef-
fect of welfare. In this view, economy is a complex system of
many competing microinterests. The dynamics of their interac-
tions in a self-organizing process leads to a final state of equi-
librium between supply and demand. Here, individual human
behavior is assumed to be rational, regular, and predictable, lead-
ing to a linear economic model. Such linear models do not take
into consideration unpredictable irrational behavior, restrictions
imposed by the environment, and nonlinear, nonadditive inter-
dependencies between individuals and their actions. In reality,
the system of a free market economy is an open system in per-
manent exchange of matter, energy, and information with other
markets and nature. Thus, endogenous nonlinear systems with
impressed waves of exogenous forces are more realistic models
of economics. An economic system will, therefore, not approach
any type of equilibrium state but rather undergo processes of dy-
namic structure generation, triggered by even minor changes in
the boundary conditions as control parameters. Policy measures
as impacts on an oscillating systemmay cause effects opposite to
those intended up to driving the system into the chaotic regime.
The agents of a market system are humans capable of learning
and adapting to new situations, including memory effects. Sen-
sitive reactions in the system due to short time fluctuations of
consumer preferences, uncoordinated dynamics of the produc-
tion side, speculations on markets of commodities, and real es-
tate are common experience. Even fluctuations on a small scale,
such as technical innovations, can organize themselves by the
mechanism of selection between stable and unstable modes of
the system to large scale growth phenomena and may build up
to entirely new macroscopic states of the system. While indis-
pensable for economic welfare, such mechanisms may well lead
to systemic risks and even disasters like stock market crashes
and spread of unemployment with associated mass impoverish-
ment. As a consequence, there have been formulated ideologies
which suggest to abolish the dynamic structure generation by
self-organization in economic markets altogether and replace it
by a central distribution machinery, that is, turn to the artificial
linear equilibrium theory. This, of course, can only be sensible in
closed systems as established theoretically as well as practically.
In open systems, such as a modern economic system, historical
experience has impressive facts about the nonworkability of such
an approach.
As a final example for systemic risks as phenomena of com-

plexity, we consider the emergence and dynamics of divided so-
cieties as a process of dynamic structure generation. This process
is relevant in social unrest, in revolutions, and in changes of po-
litical systems. The system to be considered may be a state with
well-defined borders. Across the borders, external control param-
eters impact upon the system such as a transfer of people and in-
formation. The agents in the system are manyfold, at the lowest
level the humans in the system, but at higher levels autonomous
substructures formed by them such as political parties, massme-
dia, and the government. The emergence of a divided society is
invariably associated with the polarization and radicalization of
the public opinion. Processes at the microlevel of the agents gen-

erate a predominant public opinion in a bottom-up outcome of
a macrostructure. This macrostructure acts back down upon the
agents of the system in circular causality. The order parameter
is thus the public opinion itself, for example, the distribution
of approval, refusal, or indifference with respect to a particular
political issue, such as that of an upper limit of refugees to be
accepted in a country during one year. The goal of the study is to
scrutinize under which circumstances sudden changes in public
opinion can set in, that is, a phase transition, and so, as usual,
the time dynamics of the order parameter. Such macroscopic
dynamics is triggered by the microlevel processes, in particular
changes in political opinions of the citizens. Such changes re-
sult from interactions of the citizens among each other as well
as with the mass media, the collective opinion macrostructure,
and government propaganda. In the beginning of phase transi-
tions, a destabilization of the system will be observed. External
control parameters inducing such instability may be factual or
even only assumed boundlessness of migrants from culturally
incompatible societies or the threat of economic drop by global ef-
fects, for example, by political turnabout in some important inter-
acting country. Besides such external control parameters, there
are internal properties of the system inducing nonlinear interac-
tions promoting instability, which heremay be spiritual bondage,
social unequalness, and loss of trust in justice and safety. In
a situation of instability, a considerable decomplexification be-
comes noticeable. This invites to look for simple measurable pa-
rameters. So, a situation of instability on the eve of societal un-
rest makes itself noticeable by an accumulation of extraordinary
events, such as unapproved demonstrations, terror attacks from
the inside of the society, and aggressions against fringe groups
of the society. In such situations of instability, a dramatic sen-
sitivity of the macrostructure of the system with respect to ac-
cidental fluctuations in the microstructure presents itself, such
as crimes attributed to single migrants, fake news about foreign
infiltration resulting in the appearance of a new political party,
or other normally ignored events. Close monitoring of such phe-
nomena helps to recognize the onset of a phase transition, here
a sudden turnover of public opinion with the consequence of the
emergence of a divided society.

3. Mathematical Modeling

Looking at systemic risks on the basis of complexity theory indi-
cates the nature of phenomena which are to be expected in the
dynamic evolution and the associated systemic risks. So, one is
advised to be alert to different macroscopic time scales: while the
system may evolve slowly and hardly noticeably under the con-
tinuous influence of some exogenous impact; there may at one
moment appear a sudden tipping, a harmful disaster, of unpre-
dictable consequences. One is further motivated to look for char-
acteristic parameters indicating instability regions, whichwill an-
nounce themselves empirically by irregularities, as discovered,
for example, by a time series analysis. Finally, historical insight
into a system should be valued since the path the system takes
cannot be understood without a historical perspective. In this
way, complexity science provides a mental framework for order-
ing the analysis and helps to systematize the empirical consider-
ations of systemic risks in socioeconomic systems.
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Beyond this remarkable value of the general framework, the
mathematical instruments of complexity science can be applied
to the analysis of systemic risks, with the goal of getting quanti-
tative insight into the systemic risks to be expected in a system.
The three main approaches are the formulation in terms of dif-
ferential and difference equations, agent-based simulation, and
complex network theory.

3.1. Differential and Difference Equations

The most natural mathematical formulation of dynamic systems
is based on differential and difference equations. It turns out that
rather different mathematical models tailored to rather different
systems essentially reproduce the same fundamental patterns of
dynamic behavior as a consequence of the homomorphism dis-
cussed above. So, contrary to many standard problems of physics
and chemistry, an individual mathematical model in complexity
theory in the form of an iterated function or a differential equa-
tion is just the beginning of an understanding, whereas its eval-
uation over time produces universal and unforeseen dynamical
structures. Well-defined rules, often surprisingly simple, when
applied in active repetition without any intentionality over and
over again, lead to an evolution in time showing a remarkable
creativity and richness of structures, not to be expected from the
simple underlying model specifying the rules.

3.1.1. Top-Down Models

One branch of models based on differential equations describes
the dynamics of systems in terms of formal parameters without
any explicit reference to the interactions of the agents. From a
methodological perspective, this is a top-down approach to the
generation of a dynamic model. A mathematical model is as-
sumed and the dynamic behavior of the associated system is de-
duced by solving the differential equation under suitable initial
and specifying conditions. A paradigmatic example is the logis-
ticmapwhich illustrates the basic concepts of complex dynamical
systems.[20] Mathematically, this difference equation is defined by
a quadratic and thus nonlinear recursive formula mapping the
value of a function onto itself depending on a control parameter.
Its continuous version is the logistic curve or differential equa-
tion. For different values of the control parameter, all typical types
of dynamical behavior can bemodeled, from an equilibriumfixed
point attractor at low values, over a limit cycle at increasing val-
ues where the system jumps periodically between two states up to
the phenomenon of chaos, that is, an entirely irregular dynamic
behavior depending sensitively on the initial conditions. It is far
from self-evident that a simple equation with simple rules is ca-
pable of reproducing such a richness of dynamic structures. It
clearly shows that complex dynamic behavior does not require
complex rules. There is a wide spectrum of applications of the lo-
gistic model, from chemical reaction rates over growth of animal
and plant populations up to the growth of towns.[21] Quite sim-
ilar patterns are obtained from the Lotka–Volterra equations,[22]

which find extensive use in biology, ecology, and epidemiology.
In particular, they have been used to investigate the relationship
between predator and prey and the associated systemic risks with

respect to the stock of a population. The fact that different equa-
tions lead to the same basic patterns underlines mathematically
the homomorphism of dynamic structures in different domains,
as discussed in empirical observation above.

3.1.2. Bottom-Up Models

In tailoring the model to a particular application, it could be ad-
justed to the problem under consideration from a set of data
corresponding to time-dependent events of the dynamic system.
This would be a bottom-up approach tomodel building.However,
in most practical cases associated with systemic risks, notably in
socioeconomic systems, measurements of dynamic events will
not be available in sufficient quantity or quality to proceed along
these lines. Then it ismore practical to design a bottom-upmodel
on the basis of plausible assumptions about the microprocesses
of the agents. Agents make decisions, that is, they choose one of
several behavioral alternatives in conflict situations with particu-
lar probabilities. This then leads to the formulation of so-called
master equations[23]. These are differential equations formulat-
ing the time evolution of a distribution of order parameters of a
complex system in terms of probabilistic actions of the agents.
In the social sciences, this approach has been worked out for

numerous applications and the associated field is referred to as
sociodynamics.[24] The general machinery of this approach is a
two-step procedure inmutual feedback, starting from a thorough
empirical analysis of the system in the framework of complexity
science and casting this analysis into a mathematical formula-
tion. Examples for systemic risks treated quantitatively by this
approach are the dynamic structure generation in migration of
interacting populations[25] or the emergence of divided societies.
We briefly discuss these systems here for illustration.
Starting with the empirical analysis, it is first recognized that

the agents in such applications are obviously the individuals of
the society. The analytical goal is to scrutinize the conditions un-
der which an originally homogeneous distribution of individu-
als over different areas (migration) or over various public opin-
ions (divided societies) in the system may become unstable and
perform a transition to nonhomogeneous distributions. Hence,
the parameters describing the distribution of individuals over the
areas or the opinions represent the appropriate order parameters.
The microlevel of individual decisions is distinguished from the
macrolevel of the dynamic collective processes. The macropro-
cesses result from the actions of the agents on the microlevel.
Since there is no rigorous theory for these actions, contrary to the
model systems of physics and chemistry, assumptions of a proba-
bilistic nature are made for them which naturally leads to a prob-
ability distribution of the order parameters. The time-dependent
differential equation for this probability function is the master
equation. The interactions in this approach are not direct in the
sense that they are between two or more agents. Rather, they
are decisions which induce behavioral changes of the total sys-
tem. Such indirect interactions are especially relevant for systems
where the dynamics is induced by the socioeconomic field, such
as represented by themedia, public opinions, norms, trends, and
the environment, which influence the decision preferences of the
individuals. Differences between human and nonhuman com-
plex systems become very clear in this modeling approach.
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At themicroscopic level, human actions are intentional, for ex-
ample, guided by consideration of utilities, and nonlinear, that is,
dependent on individual as well as collective interactions. These
interactions represent internal driving forces. Structures initi-
ated by actions of the agents will act back upon them and thus
will stabilize the structures by circular causality. As a prerequisite
for structure generation to happen, the system must have been
brought into an unstable condition. This can be achieved in prin-
ciple either by external impacts, measured in terms of external
control parameters exceeding a threshold, or by internal effects,
passing a critical threshold of internal control parameters. Nor-
mally, it is a critical combination of both effects. External impacts
may be political regulations setting rules for the living together of
individuals in the society or also the informational flow into the
system from other societies. Internal effects may be the advent
of strong cultural or ethnic feelings leading to agglomeration or
segregationmovements in combinationwith a general and global
positive inclination to radicalism. When a regime of instability
is reached by a critical combination of external and internal im-
pacts, random fluctuations become important and may drive the
system out of the homogeneous and into a heterogeneous dis-
tribution as a new dynamic structure. Such random fluctuations
may be of political or economic origin, such as external political
impacts or internal economical perturbations with which some
parts of the population are charged. In detail, like in the physico-
chemical model systems, fluctuations in the form of chaotic and
uncoordinated elementary dynamic interactions lead the system
to test its various differentmodes of potentialmacroscopic behav-
ior and finally select one or a few. This leads again to the appear-
ance of macroscopic order parameters in terms of which the dy-
namic structure generation can be described. In the present case,
these order parameters are the number of individuals of partic-
ular groups distributed over the various areas or opinions in the
system. This is very much less than to be expected from the mul-
titude of agents and their elementary interactions. Most of these
microscopic variables turn out to relax rapidly to their equilib-
rium values and just can be eliminated from the dynamic model.
This empirical analysis can be cast into a mathematical for-

mulation. For this purpose, it will be required to formalize the
elementary dynamics in terms of probabilities, since no deter-
ministic laws will generally be known. In the master equation,
the actions of the agents are indirect in the sense that they do
not interact with each other directly but rather change themacro-
configuration of the system. The elementary agent actions thus
consist of transitions of one individual from one region or politi-
cal opinion to another thus changing the macroconfiguration di-
rectly. This transition is formulated in terms of a particular prob-
abilistic transition rate reflecting the attractiveness of the transi-
tion step, referred to as a utility function. The utility functions
contain empirical parameters such as those measuring the at-
tractivity of a transition. They also contain the original as well as
the new macroconfiguration and thus formulate the crucial phe-
nomenon of circular causality between the agent´s actions and
the macroscopic structure. This implies that neither the migra-
tion nor the public opinion formation can be explained by the
free will of single persons but rather is influenced by the social
environment. Balancing the transitions rates in and out of a par-
ticular macroconfiguration leads to a stochastic evolution model,
a differential equation referred to as the master equation, which

has to be solved numerically. The final result of the quantitative
model is then information about the probability of a certain evo-
lution of the system. After proper averaging, an evolution phase
portrait of the order variables can be obtained. It should be noted
that themaster equation has a universal form for all applications.
Its individuality is contained in the probabilistic transition rates,
in which all empirical knowledge is incorporated. Since, contrary
to the model systems of physics and chemistry, no rigorous for-
mulation is available for themicrodynamics, themaster equation
formulation in socioeconomic applications has to rely on empir-
ical assumptions about the agent´s actions. So, any prediction of
the future behavior of the system will not be possible. Instead,
scenarios can be studied which shed light on the relevance of
certain agent actions for the macroscopic system dynamics. This
detailed information represents a considerable progress with re-
spect to quantifying systemic risks in comparison to a purely em-
pirical analysis.

3.2. Agent-Based Simulation

Master equations are not easy to solve for complex applications.
So, the complexity of scientific models is limited by mathemati-
cal tractability. An alternative approach is to abstain from a closed
mathematical formulation altogether and instead turn to a com-
puter simulation of the agent´s actions and study the resulting
emergence of macroscopic structures. Contrary to the master
equation formalism consideration is turned to direct interactions
between the agents, for example, opinion changes caused by dis-
cussions between individuals instead of feedback by some so-
ciocultural field. The agents are unique and autonomous enti-
ties that interact with each other and their environment locally.
As autonomous entities agents act independently of each other
and pursue their own objectives. They show an adaptive behav-
ior in the sense that they adjust to the current state of themselves,
of other agents, and of their environment. Agent-based models
cross the various levels of a system. They study what happens
to the system on the basis of the agent´s actions but, in circu-
lar causality, equally well what happens to the agents due to the
macroscopic dynamics of the system. This represents a particu-
lar thorough insight into the origins of systemic risks and their
assessment and control.
The modeling machinery is analogous to that for the mas-

ter equation approach, that is, a two-step procedure of empirical
analysis of the system and incorporating this into a simulation
computer code. So, we may renounce illustrating the procedure
by a particular example and instead point to the vast literature on
application of agent-based simulation to the study of the dynam-
ics of complex systems.[26–28] Clearly, in quantitative studies for
socioeconomic systems, some of the same basic limitations ap-
ply as in themaster equation formalism, although the approach is
more versatile. There remains the problemof a lack of fundamen-
tal theory for the properties and the actions of the agents. They
must be modeled on the basis of assumptions with empirical pa-
rameters. So again, only seldom will enough data be available to
allocate meaningful values for the model parameters and most
studies that have been made have the character of scenarios.
We finally note that agent-based simulations are also com-

mon practice in the physicochemical model world. In fact, some
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technical tricks in performing these simulations have been in-
spired by those earlier applications, notably molecular dynamics
and Monte Carlo studies for the properties of fluids.[29,30] It has
been learnt there that such computer simulations do not have
their primary value in predicting the system´s macroscopic be-
havior. Much rather they are tools for developing theories of a
system´s behavior on the basis of the microprocesses or, alter-
natively, as tools to gain insight into suitable interaction rules
between the agents to generate a desired macroscopic behavior
of the system. In applications to systemic risks, this insight in
the consequences of modifying the interaction rules between the
agents is a sensible route to information about successful gover-
nance strategies.

3.3. Complex Network Theory

More often than not, systemic risks appear in complex systems
with a distinct network structure. Typical examples from technol-
ogy are energy supply grids, urban freshwater supply, transport,
and information/communication networks. These systems are
extremely vulnerable[31] and thus, due to their importance for so-
ciety life and welfare, represent a significant sector in the study of
systemic risks. Beyond these technical infrastructures, also sys-
temic risks in financial systems are best understood when con-
sidered as a network structure and this frequently also applies to
social systems. So, complex network analysis recommends itself
as a further mathematical tool for the analysis of system risks.
Beyond the mathematical modeling approaches discussed

above, complex network theory opens the chance to generate new
insights into network growth mechanisms and interdependen-
cies among network partners shedding additional light on points
and causes for systemic risks. Since networks are ubiquitously
present in almost all systems in biology, ecology, technology,
and sociology, there is a considerable amount of empirical
knowledge about controlling such structures that may well
be transferred to any domain in the sense of homomorphism
and be made fruitful in managing systemic risks. Information
may thus be obtained from rather different empirical sources
about how the underlying network topology influences the
system behavior and its inherent risk characteristics. Just as
the topology of a power grid affects its resilience to failure
and breakdown, analogous mechanisms are in operation in
financial as well as in social networks, and much can be learnt
from these analogies. Quite generally, complex network theory
comprises the study of the topology of the network graph and its
relationship to its vulnerability to systemic risks and the study
of its dynamic behavior through functional models based on the
communication processes within the network responsible for
the emergence of cascading of failures taking place in it.
The topological analysis aims at capturing the structural prop-

erties of a network. For this purpose, the network is modeled as
a graph whose nodes represent the system units and the links
model the interactions between directly connected units. The ac-
tual structure of the network of interconnections between the
units is a critical feature of the system. Redundant wiring, in
technical infrastructures, is known to promote their stability and
robustness. A crucial aspect of complex network analysis is the
interplay between the network structural characteristics and its

dynamic performance. Models have been developed which allow
analyzing the system response to cascading failures and can be
used to guide a successive detailed simulation concentrating on
the most relevant processes and network components. Clearly,
such an analysis, if it is to be a meaningful prediction tool in a
practical situation, has to rely on a large amount of data. In techni-
cal infrastructures, such data would concern the technical charac-
teristics of links and nodes, load requirements, failure probabil-
ities etc., with similar information requirements for other types
of networks, such as in financial or social systems. This require-
ment of empirical information is ubiquitous in all applications
of mathematical modeling and is the primary limitation to reli-
able predictions. However, here as in themathematical modeling
approaches discussed before, valuable insights may be obtained
from parameter variations and associated scenario studies.
An example of topological and weighted analysis is available

for the Swiss 220 kV/380 kV high voltage transmission system,
made up of 161 nodes connected by 219 overhead lines.[32] The
analysis is based on the assumption of a constant and universal
annual failure rate per km for the whole network, which is the
number of failures that occur in 1 year along 1 km of overhead
line connecting two nodes. The analysis identifies the most vul-
nerable lines of the network, as a first basis for the systemic risk
assessment. In order to capture the dynamic behavior of the sys-
tem, a failure cascade modeling has to be performed. Results of
such a study are available for the 380 kV Italian power transmis-
sion network.[33] In the model, the components of the grid are as-
sumed to have a load limitation beyond which they fail. To study a
possible cascade of failures spreading over the whole network an
initial perturbation is introduced imposing on each component
an additional load. A component will fail when the sum of the
initial and the perturbation load exceeds the limitation load. Then
an additional load is transferred to each of the systems compo-
nents. As the total load of the grid increases, a cascade of failures
becomes more likely. Each failure of a component causes a re-
distribution of power flow in the network imposing stress on the
other components which may lead to a blackout. This does not
normally happen gradually or uniformly but rather as an event of
phase transition in an unstable situation of the grid. The dynamic
phenomena in power grids thus again show the typical patterns
of emerging dynamic structures in open complex systems.
Amajor example of the relevance of complex networks is given

by the financial crisis that hit the world economy in 2007 and the
following years. It has already generated a substantial literature
on systemic risks in the domain of finance. Whether the insights
available so far will be sufficient to avoid another crisis of poten-
tially even larger proportions remains to be seen. We have dis-
cussed the global financial crisis as a paradigmatic example of
systemic risks in ref. [5].

4. Conclusions

As themodern world savors its advances, it grows ever more fear-
ful of the potential threats that accompany them. Systemic risks
are now a troubling addition to the already sizable repertoire of
conventional risks. They are real, they appear again and again,
as headlines show, they present intractable challenges, and they
demand new forms of governance.
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The first step toward an effective governance approach is the
need to understand systemic risks and their implications. Un-
til this day, we lack an adequate understanding of the structure
and dynamics of systemic risks. The lack of a well-defined event
space and sufficiently defined preferences impede the application
of conventional risk assessment methods based on the combina-
tion of probability distributions and the extent of damage.
The focus should rather be on multiagent models that link the

microlevel to the macrolevel and include emerging properties,
since each agent is linked to other agents by multiple feedback
loops. The experiences from the physical and chemical sciences
can be used as a heuristic tool for building such models and fill
them with substantive empirical data. The challenge will be to
improve our modeling capability to include intentional behavior
in models considering large degrees of freedom and variability.
In addition, systemic risk evolves dynamically and produces be-
havioral changes over time in a historic time dependency. It is
still unclear how much of these dynamics is idiosyncratic and
how much generalizable. The concepts that were laid out in this
Essay may serve as a guidebook for collecting empirical data and
constructing complex multiagent models in an effort toward a
more profound analysis and toward governance strategies across
domains.
Furthermore, management concepts that have been developed

to understand conventional risks are not sufficient for dealing
with systemic risks because they are often too reductionist and
limited in scope to account for complex system interactions and
challenges. As such, managing systemic risks requires a more
comprehensive approach to hazard and impact identification,
risk assessment, and risk management. The options for manag-
ing complex systems in a targeted manner (e.g., with mitigation)
are limited, and interventions can have unexpected and uncon-
trollable consequences which may look as stochastic and chaotic.
The main lesson learned from this Essay is that homomorphic
patterns of complex systems could be an important heuristic
tool to improve our understanding of complex risks and their
characteristics.
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